Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(12): 105421, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37923139

RESUMEN

The two-spotted spider mite, Tetranychus urticae, is a major cosmopolitan pest that feeds on more than 1100 plant species. Its genome contains an unprecedentedly large number of genes involved in detoxifying and transporting xenobiotics, including 80 genes that code for UDP glycosyltransferases (UGTs). These enzymes were acquired via horizontal gene transfer from bacteria after loss in the Chelicerata lineage. UGTs are well-known for their role in phase II metabolism; however, their contribution to host adaptation and acaricide resistance in arthropods, such as T. urticae, is not yet resolved. TuUGT202A2 (Tetur22g00270) has been linked to the ability of this pest to adapt to tomato plants. Moreover, it was shown that this enzyme can glycosylate a wide range of flavonoids. To understand this relationship at the molecular level, structural, functional, and computational studies were performed. Structural studies provided specific snapshots of the enzyme in different catalytically relevant stages. The crystal structure of TuUGT202A2 in complex with UDP-glucose was obtained and site-directed mutagenesis paired with molecular dynamic simulations revealed a novel lid-like mechanism involved in the binding of the activated sugar donor. Two additional TuUGT202A2 crystal complexes, UDP-(S)-naringenin and UDP-naringin, demonstrated that this enzyme has a highly plastic and open-ended acceptor-binding site. Overall, this work reveals the molecular basis of substrate promiscuity of TuUGT202A2 and provides novel insights into the structural mechanism of UGTs catalysis.


Asunto(s)
Glicosiltransferasas , Tetranychidae , Genoma , Glicosiltransferasas/química , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Plantas/parasitología , Uridina Difosfato , Especificidad por Sustrato , Tetranychidae/enzimología , Tetranychidae/genética
2.
Elife ; 112022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377784

RESUMEN

As a first step in innate immunity, pattern recognition receptors (PRRs) recognize the distinct pathogen and herbivore-associated molecular patterns and mediate activation of immune responses, but specific steps in the evolution of new PRR sensing functions are not well understood. We employed comparative genomic and functional analyses to define evolutionary events leading to the sensing of the herbivore-associated peptide inceptin (In11) by the PRR inceptin receptor (INR) in legume plant species. Existing and de novo genome assemblies revealed that the presence of a functional INR gene corresponded with ability to respond to In11 across ~53 million years (my) of evolution. In11 recognition is unique to the clade of Phaseoloid legumes, and only a single clade of INR homologs from Phaseoloids was functional in a heterologous model. The syntenic loci of several non-Phaseoloid outgroup species nonetheless contain non-functional INR-like homologs, suggesting that an ancestral gene insertion event and diversification preceded the evolution of a specific INR receptor function ~28 my ago. Chimeric and ancestrally reconstructed receptors indicated that 16 amino acid differences in the C1 leucine-rich repeat domain and C2 intervening motif mediate gain of In11 recognition. Thus, high PRR diversity was likely followed by a small number of mutations to expand innate immune recognition to a novel peptide elicitor. Analysis of INR evolution provides a model for functional diversification of other germline-encoded PRRs.


The health status of a plant depends on the immune system it inherits from its parents. Plants have many receptor proteins that can recognize distinct molecules from insects and microbes, and trigger an immune response. Inheriting the right set of receptors allows plants to detect certain threats and to cope with diseases and pests. Soybeans, chickpeas and other closely-related crop plants belong to a family of plants known as the legumes. Previous studies have found that, unlike other plants, some legumes are able to respond to oral secretions from caterpillars. These plants have a receptor known as INR that binds to a molecule called inceptin in the secretions. However, it remained unclear how or when INR evolved. To address this gap, Snoeck et al. tested immune responses to inceptin in the leaves of 22 species of legume. The experiments revealed that only members of a subgroup of legumes called the Phaseoloids were able to recognize the molecule. Analyzing the genomes of several legume species revealed that the gene encoding INR first emerged around 28 million years ago. Among the descendants of the legumes that first evolved this receptor, only the crop plant soybean and a few other species were unable to respond to inceptin. The genomic data indicated that these species had in fact lost the gene encoding INR over evolutionary time. Snoeck et al. then combined data from genes encoding modern-day receptors to reconstruct the sequence of building blocks that make up the 28-million-year-old version of INR. This ancestral receptor was able to respond to inceptin in the caterpillar secretion, whereas an older version of the protein, which had a slightly different set of building blocks, could not. This suggests that INR evolved the ability to respond to inceptin as a result of small mutations in the gene encoding a more ancient receptor. The work of Snoeck et al. reveals how the Phaseoloids evolved to respond to caterpillars, and how this ability has been lost in soybeans and other members of the subgroup. In the future, these findings may aid plant breeding or genetic engineering approaches for enhancing soybeans and other crops resistance to caterpillar pests.


Asunto(s)
Inmunidad Innata , Receptores de Reconocimiento de Patrones , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Plantas/genética , Plantas/metabolismo , Sintenía
3.
Plant Cell ; 34(5): 1497-1513, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35026025

RESUMEN

Plant defense responses against insect herbivores are induced through wound-induced signaling and the specific perception of herbivore-associated molecular patterns (HAMPs). In addition, herbivores can deliver effectors that suppress plant immunity. Here we review plant immune recognition of HAMPs and effectors, and argue that these initial molecular interactions upon a plant-herbivore encounter mediate and structure effective resistance. While the number of distinct HAMPs and effectors from both chewing and piercing-sucking herbivores has expanded rapidly with omics-enabled approaches, paired receptors and targets in the host are still not well characterized. Herbivore-derived effectors may also be recognized as HAMPs depending on the host plant species, potentially through the evolution of novel immune receptor functions. We compile examples of HAMPs and effectors where natural variation between species may inform evolutionary patterns and mechanisms of plant-herbivore interactions. Finally, we discuss the combined effects of wounding and HAMP recognition, and review potential signaling hubs, which may integrate both sensing functions. Understanding the precise mechanisms for plant sensing of herbivores will be critical for engineering resistance in agriculture.


Asunto(s)
Herbivoria , Plantas , Animales , Herbivoria/fisiología , Insectos/fisiología , Inmunidad de la Planta/genética , Plantas/genética , Transducción de Señal
4.
Commun Biol ; 4(1): 853, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244609

RESUMEN

Plant-herbivore interactions promote the generation and maintenance of both plant and herbivore biodiversity. The antagonistic interactions between plants and herbivores lead to host race formation: the evolution of herbivore types specializing on different plant species, with restricted gene flow between them. Understanding how ecological specialization promotes host race formation usually depends on artificial approaches, using laboratory experiments on populations associated with agricultural crops. However, evidence on how host races are formed and maintained in a natural setting remains scarce. Here, we take a multidisciplinary approach to understand whether populations of the generalist spider mite Tetranychus urticae form host races in nature. We demonstrate that a host race co-occurs among generalist conspecifics in the dune ecosystem of The Netherlands. Extensive field sampling and genotyping of individuals over three consecutive years showed a clear pattern of host associations. Genome-wide differences between the host race and generalist conspecifics were found using a dense set of SNPs on field-derived iso-female lines and previously sequenced genomes of T. urticae. Hybridization between lines of the host race and sympatric generalist lines is restricted by post-zygotic breakdown, and selection negatively impacts the survival of generalists on the native host of the host race. Our description of a host race among conspecifics with a larger diet breadth shows how ecological and reproductive isolation aid in maintaining intra-specific variation in sympatry, despite the opportunity for homogenization through gene flow. Our findings highlight the importance of explicitly considering the spatial and temporal scale on which plant-herbivore interactions occur in order to identify herbivore populations associated with different plant species in nature. This system can be used to study the underlying genetic architecture and mechanisms that facilitate the use of a large range of host plant taxa by extreme generalist herbivores. In addition, it offers the chance to investigate the prevalence and mechanisms of ecological specialization in nature.


Asunto(s)
Adaptación Fisiológica/genética , Productos Agrícolas/genética , Flujo Génico/genética , Variación Genética , Tetranychidae/genética , Animales , Proteínas de Artrópodos/clasificación , Proteínas de Artrópodos/genética , Productos Agrícolas/parasitología , Complejo IV de Transporte de Electrones/clasificación , Complejo IV de Transporte de Electrones/genética , Femenino , Especiación Genética , Herbivoria/clasificación , Herbivoria/genética , Interacciones Huésped-Parásitos/genética , Países Bajos , Filogenia , Aislamiento Reproductivo , Especificidad de la Especie , Simpatría , Tetranychidae/clasificación
5.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33547243

RESUMEN

Varroa destructor is one of the main problems in modern beekeeping. Highly selective acaricides with low toxicity to bees are used internationally to control this mite. One of the key acaricides is the organophosphorus (OP) proinsecticide coumaphos, that becomes toxic after enzymatic activation inside Varroa We show here that mites from the island Andros (AN-CR) exhibit high levels of coumaphos resistance. Resistance is not mediated by decreased coumaphos uptake, target-site resistance, or increased detoxification. Reduced proinsecticide activation by a cytochrome P450 enzyme was the main resistance mechanism, a powerful and rarely encountered evolutionary solution to insecticide selection pressure. After treatment with sublethal doses of [14C] coumaphos, susceptible mite extracts had substantial amounts of coroxon, the activated metabolite of coumaphos, while resistant mites had only trace amounts. This indicates a suppression of the P450 (CYP)-mediated activation step in the AN-CR mites. Bioassays with coroxon to bypass the activation step showed that resistance was dramatically reduced. There are 26 CYPs present in the V. destructor genome. Transcriptome analysis revealed overexpression in resistant mites of CYP4DP24 and underexpression of CYP3012A6 and CYP4EP4 RNA interference of CYP4EP4 in the susceptible population, to mimic underexpression seen in the resistant mites, prevented coumaphos activation and decreased coumaphos toxicity.


Asunto(s)
Abejas/genética , Sistema Enzimático del Citocromo P-450/genética , Varroidae/efectos de los fármacos , Animales , Abejas/efectos de los fármacos , Abejas/parasitología , Cumafos/efectos adversos , Cumafos/farmacología , Inactivación Metabólica/efectos de los fármacos , Insecticidas/efectos adversos , Insecticidas/farmacología , Tasa de Depuración Metabólica/genética , Varroidae/patogenicidad
7.
BMC Biol ; 18(1): 142, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33070780

RESUMEN

BACKGROUND: The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. RESULTS: We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. CONCLUSIONS: Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.


Asunto(s)
Genoma de los Insectos , Rasgos de la Historia de Vida , Thysanoptera/fisiología , Transcriptoma , Animales , Productos Agrícolas , Conducta Alimentaria , Cadena Alimentaria , Inmunidad Innata/genética , Percepción , Filogenia , Reproducción/genética , Thysanoptera/genética , Thysanoptera/inmunología
8.
Pest Manag Sci ; 76(8): 2569-2581, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32237053

RESUMEN

BACKGROUND: Milbemectin and abamectin are frequently used to control the spider mite Tetranychus urticae. The development of abamectin resistance in this major pest has become an increasing problem worldwide, potentially compromising the use of milbemectin. In this study, a large collection of European field populations was screened for milbemectin and abamectin resistance, and both target-site and metabolic (cross-)resistance mechanisms were investigated. RESULTS: High to very high levels of abamectin resistance were found in one third of all populations, while milbemectin resistance levels were low for most populations. The occurrence of well-known target-site resistance mutations in glutamate-gated chloride channels (G314D in GluCl1 and G326E in GluCl3) was documented in the most resistant populations. However, a new mutation, I321T in GluCl3, was also uncovered in three resistant populations, while a V327G and L329F mutation was found in GluCl3 of one resistant population. A differential gene-expression analysis revealed the overexpression of detoxification genes, more specifically cytochrome P450 monooxygenase (P450) and UDP-glycosyltransferase (UGT) genes. Multiple UGTs were functionally expressed, and their capability to glycosylate abamectin and milbemectin, was tested and confirmed. CONCLUSIONS: We found a clear correlation between abamectin and milbemectin resistance in European T. urticae populations, but as milbemectin resistance levels were low, the observed cross-resistance is probably not of operational importance. The presence of target-site resistance mutations in GluCl genes was confirmed in most but not all resistant populations. Gene-expression analysis and functional characterization of P450s and UGTs suggests that also metabolic abamectin resistance mechanisms are common in European T. urticae populations. © 2020 Society of Chemical Industry.


Asunto(s)
Tetranychidae , Animales , Ivermectina/análogos & derivados , Macrólidos
9.
Pestic Biochem Physiol ; 164: 73-84, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32284140

RESUMEN

The citrus red mite, Panonychus citri, is a major pest on citrus all around the world. Mitochondrial Electron Transport Inhibitors of complex I (METI-I) acaricides such as fenpyroximate have been used extensively to control P. citri populations, which resulted in multiple reports of METI-I resistant populations in the field. In this study, biochemical and molecular mechanisms of fenpyroximate resistance were investigated in P. citri. Seven populations were collected from Northern provinces of Iran. Resistance ratios were determined and reached up to 75-fold in comparison to a fenpyroximate susceptible population. Cross-resistance to two additional METI-I acaricides, pyridaben and tebufenpyrad, was detected. PBO synergism experiments, in vivo enzyme assays and gene expression analysis suggest a minor involvement of cytochrome P450 monooxygenases in fenpyroximate resistance, which is in contrast with many reported cases for the closely related Tetranychus urticae. Next, we determined the frequency of a well-known mutation in the target-site of METI-Is, the PSST subunit, associated with METI-I resistance. Indeed, the H92R substitution was detected in a highly fenpyroximate resistant P. citri population. Additionally, a new amino acid substitution at a conserved site in the PSST subunit was detected, A94V, with higher allele frequencies in a moderately resistant population. Marker-assisted back-crossing in a susceptible background confirmed the potential involvement of the newly discovered A94V mutation in fenpyroximate resistance. However, introduction of the A94V mutation in the PSST homologue of D. melanogaster using CRISPR-Cas9 did not result in fenpyroximate resistant flies. In addition, differences in binding curves between METI-Is and complex I measured directly, in isolated transgenic and wildtype mitochondria preparations, could not be found.


Asunto(s)
Acaricidas , Citrus , Tetranychidae , Animales , Drosophila melanogaster , Irán
10.
Curr Opin Insect Sci ; 36: 57-65, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31499416

RESUMEN

Bulked segregant analysis (BSA) is a cross-based method for genetic mapping in sexually reproducing organisms. The method's use of bulked (pooled) samples markedly reduces the genotyping effort associated with traditional linkage mapping studies. Further, it can be applied to species with life histories or physical attributes (as for micro-insects) that render genetic mapping with other methods impractical. Recent studies in both insects and mites have revealed that advanced BSA experimental designs can resolve causal loci to narrow genomic intervals, facilitating follow-up investigations. As high-quality genomes become more widely available, BSA methods are poised to become an increasingly important tool for the rapid mapping of both monogenic and polygenic traits in diverse arthropod species.


Asunto(s)
Artrópodos/genética , Mapeo Cromosómico/métodos , Animales , Genómica/métodos , Hibridación Genética , Sitios de Carácter Cuantitativo
11.
Insect Biochem Mol Biol ; 109: 116-127, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30978500

RESUMEN

Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze the addition of UDP-sugars to small hydrophobic molecules, turning them into more water-soluble metabolites. While their role in detoxification is well documented for vertebrates, arthropod UGTs have only recently been linked to the detoxification and sequestration of plant toxins and insecticides. The two-spotted spider mite Tetranychus urticae is a generalist herbivore notorious for rapidly developing resistance to insecticides and acaricides. We identified a set of eight UGT genes that were overexpressed in mites upon long-term acclimation or adaptation to a new host plant and/or in mite strains highly resistant to acaricides. Functional expression revealed that they were all catalytically active and that the majority preferred UDP-glucose as activated donor for glycosylation of model substrates. A high-throughput substrate screening of both plant secondary metabolites and pesticides revealed patterns of both substrate specificity and promiscuity. We further selected nine enzyme-substrate combinations for more comprehensive analysis and determined steady-state kinetic parameters. Among others, plant metabolites such as capsaicin and several flavonoids were shown to be glycosylated. The acaricide abamectin was also glycosylated by two UGTs and one of these was also overexpressed in an abamectin resistant strain. Our study corroborates the potential role of T. urticae UGTs in detoxification of both synthetic and natural xenobiotic compounds and paves the way for rapid substrate screening of arthropod UGTs.


Asunto(s)
Acaricidas/metabolismo , Expresión Génica , Glicosiltransferasas/química , Glicosiltransferasas/genética , Tetranychidae/química , Tetranychidae/genética , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Escherichia coli/genética , Transferencia de Gen Horizontal , Herbivoria , Cinética , Fase II de la Desintoxicación Metabólica , Microorganismos Modificados Genéticamente/genética , Filogenia , Especificidad por Sustrato , Uridina Difosfato , Xenobióticos/metabolismo
12.
Insect Biochem Mol Biol ; 110: 19-33, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31022513

RESUMEN

Arthropod herbivores cause dramatic crop losses, and frequent pesticide use has led to widespread resistance in numerous species. One such species, the two-spotted spider mite, Tetranychus urticae, is an extreme generalist herbivore and a major worldwide crop pest with a history of rapidly developing resistance to acaricides. Mitochondrial Electron Transport Inhibitors of complex I (METI-Is) have been used extensively in the last 25 years to control T. urticae around the globe, and widespread resistance to each has been documented. METI-I resistance mechanisms in T. urticae are likely complex, as increased metabolism by cytochrome P450 monooxygenases as well as a target-site mutation have been linked with resistance. To identify loci underlying resistance to the METI-I acaricides fenpyroximate, pyridaben and tebufenpyrad without prior hypotheses, we crossed a highly METI-I-resistant strain of T. urticae to a susceptible one, propagated many replicated populations over multiple generations with and without selection by each compound, and performed bulked segregant analysis genetic mapping. Our results showed that while the known H92R target-site mutation was associated with resistance to each compound, a genomic region that included cytochrome P450-reductase (CPR) was associated with resistance to pyridaben and tebufenpyrad. Within CPR, a single nonsynonymous variant distinguished the resistant strain from the sensitive one. Furthermore, a genomic region linked with tebufenpyrad resistance harbored a non-canonical member of the nuclear hormone receptor 96 (NHR96) gene family. This NHR96 gene does not encode a DNA-binding domain (DBD), an uncommon feature in arthropods, and belongs to an expanded family of 47 NHR96 proteins lacking DBDs in T. urticae. Our findings suggest that although cross-resistance to METI-Is involves known detoxification pathways, structural differences in METI-I acaricides have also resulted in resistance mechanisms that are compound-specific.


Asunto(s)
Acaricidas/farmacología , Resistencia a Medicamentos/genética , Sitios de Carácter Cuantitativo/genética , Tetranychidae/genética , Animales , Mapeo Cromosómico , Femenino , Sitios de Carácter Cuantitativo/efectos de los fármacos , Selección Genética , Tetranychidae/efectos de los fármacos
13.
Pest Manag Sci ; 75(7): 1808-1818, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30740870

RESUMEN

BACKGROUND: Vector control is the main intervention in malaria control and elimination strategies. However, the development of insecticide resistance is one of the major challenges for controlling malaria vectors. Anopheles arabiensis populations in Ethiopia showed resistance against both DDT and the pyrethroid deltamethrin. Although an L1014F target-site resistance mutation was present in the voltage gated sodium channel of investigated populations, the levels of resistance indicated the presence of additional resistance mechanisms. In this study, we used genome-wide transcriptome profiling by RNAseq to assess differentially expressed genes between three deltamethrin and DDT resistant An. arabiensis field populations - Asendabo, Chewaka and Tolay - and two susceptible strains - Sekoru and Mozambique. RESULTS: Both RNAseq analysis and RT-qPCR showed that a glutathione-S-transferase, gstd3, and a cytochrome P450 monooxygenase, cyp6p4, were significantly overexpressed in the group of resistant populations compared to the susceptible strains, suggesting that the enzymes they encode play a key role in metabolic resistance against deltamethrin or DDT. Furthermore, a gene ontology enrichment analysis showed that expression changes of cuticle related genes were strongly associated with insecticide resistance. Although this did not translate in increased thickness of the procuticle, a higher cuticular hydrocarbon content was observed in a resistant population. CONCLUSION: Our transcriptome sequencing of deltamethrin and DDT resistant An. arabiensis populations from Ethiopia suggests non-target site resistance mechanisms and paves the way for further investigation of the role of cuticle composition in insecticide resistance of malaria vectors. © 2019 Society of Chemical Industry.


Asunto(s)
Anopheles/genética , Anopheles/metabolismo , DDT/farmacología , Resistencia a los Insecticidas/genética , Nitrilos/farmacología , Piretrinas/farmacología , Animales , Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Etiopía , Perfilación de la Expresión Génica , Glutatión Transferasa/efectos de los fármacos , Glutatión Transferasa/metabolismo , Inactivación Metabólica/genética , Insecticidas/metabolismo , Insecticidas/farmacología , Integumento Común/fisiología , Mosquitos Vectores/efectos de los fármacos
14.
Genetics ; 211(4): 1409-1427, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30745439

RESUMEN

Pesticide resistance arises rapidly in arthropod herbivores, as can host plant adaptation, and both are significant problems in agriculture. These traits have been challenging to study as both are often polygenic and many arthropods are genetically intractable. Here, we examined the genetic architecture of pesticide resistance and host plant adaptation in the two-spotted spider mite, Tetranychus urticae, a global agricultural pest. We show that the short generation time and high fecundity of T. urticae can be readily exploited in experimental evolution designs for high-resolution mapping of quantitative traits. As revealed by selection with spirodiclofen, an acetyl-CoA carboxylase inhibitor, in populations from a cross between a spirodiclofen-resistant and a spirodiclofen-susceptible strain, and which also differed in performance on tomato, we found that a limited number of loci could explain quantitative resistance to this compound. These were resolved to narrow genomic intervals, suggesting specific candidate genes, including acetyl-CoA carboxylase itself, clustered and copy variable cytochrome P450 genes, and NADPH cytochrome P450 reductase, which encodes a redox partner for cytochrome P450s. For performance on tomato, candidate genomic regions for response to selection were distinct from those responding to the synthetic compound and were consistent with a more polygenic architecture. In accomplishing this work, we exploited the continuous nature of allele frequency changes across experimental populations to resolve the existing fragmented T. urticae draft genome to pseudochromosomes. This improved assembly was indispensable for our analyses, as it will be for future research with this model herbivore that is exceptionally amenable to genetic studies.


Asunto(s)
Adaptación Fisiológica , Evolución Molecular , Genoma de los Insectos , Resistencia a los Insecticidas/genética , Tetranychidae/genética , 4-Butirolactona/análogos & derivados , 4-Butirolactona/toxicidad , Acetil-CoA Carboxilasa/genética , Animales , Especificidad del Huésped , Proteínas de Insectos/genética , Solanum lycopersicum/parasitología , NADPH-Ferrihemoproteína Reductasa/genética , Selección Genética , Compuestos de Espiro/toxicidad , Tetranychidae/efectos de los fármacos , Tetranychidae/patogenicidad
15.
G3 (Bethesda) ; 8(12): 3865-3879, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30333191

RESUMEN

The two-spotted spider mite Tetranychus urticae is an important pest with an exceptionally broad host plant range. This generalist rapidly acclimatizes and adapts to a new host, hereby overcoming nutritional challenges and a novel pallet of constitutive and induced plant defenses. Although recent studies reveal that a broad transcriptomic response upon host plant transfer is associated with a generalist life style in arthropod herbivores, it remains uncertain to what extent these transcriptional changes are general stress responses or host-specific. In the present study, we analyzed and compared the transcriptomic changes that occur in a single T. urticae population upon long-term transfer from Phaseolus vulgaris to a similar, but chemically defended, host (cyanogenic Phaseolus lunatus) and to multiple economically important crops (Glycine max, Gossypium hirsutum, Solanum lycopersicum and Zea mays). These long-term host plant transfers were associated with distinct transcriptomic responses with only a limited overlap in both specificity and directionality, suggestive of a fine-tuned transcriptional plasticity. Nonetheless, analysis at the gene family level uncovered overlapping functional processes, recruiting genes from both well-known and newly discovered detoxification families. Of note, our analyses highlighted a possible detoxification role for Tetranychus-specific short-chain dehydrogenases and single PLAT domain proteins, and manual genome annotation showed that both families are expanded in T. urticae Our results shed new light on the molecular mechanisms underlying the remarkable adaptive potential for host plant use of generalist arthropods and set the stage for functional validation of important players in T. urticae detoxification of plant secondary metabolites.


Asunto(s)
Proteínas de Artrópodos/biosíntesis , Productos Agrícolas/parasitología , Regulación de la Expresión Génica/fisiología , Interacciones Huésped-Parásitos/fisiología , Tetranychidae/fisiología , Transcriptoma/fisiología , Animales
16.
Sci Rep ; 7(1): 13440, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-29044179

RESUMEN

Synergists can counteract metabolic insecticide resistance by inhibiting detoxification enzymes or transporters. They are used in commercial formulations of insecticides, but are also frequently used in the elucidation of resistance mechanisms. However, the effect of synergists on genome-wide transcription in arthropods is poorly understood. In this study we used Illumina RNA-sequencing to investigate genome-wide transcriptional responses in an acaricide resistant strain of the spider mite Tetranychus urticae upon exposure to synergists such as S,S,S-tributyl phosphorotrithioate (DEF), diethyl maleate (DEM), piperonyl butoxide (PBO) and cyclosporin A (CsA). Exposure to PBO and DEF resulted in a broad transcriptional response and about one third of the differentially expressed genes (DEGs), including cytochrome P450 monooxygenases and UDP-glycosyltransferases, was shared between both treatments, suggesting common transcriptional regulation. Moreover, both DEF and PBO induced genes that are strongly implicated in acaricide resistance in the respective strain. In contrast, CsA treatment mainly resulted in downregulation of Major Facilitator Superfamily (MFS) genes, while DEGs of the DEM treatment were not significantly enriched for any GO-terms.


Asunto(s)
Acaridae/efectos de los fármacos , Insecticidas/toxicidad , Sinergistas de Plaguicidas , Transcriptoma/efectos de los fármacos , Acaridae/genética , Animales , Ciclosporina/toxicidad , Genoma de los Insectos , Resistencia a los Insecticidas , Maleatos/toxicidad , Organotiofosfatos/toxicidad , Butóxido de Piperonilo/toxicidad
17.
Viruses ; 7(6): 3172-85, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26110584

RESUMEN

Israeli acute paralysis virus (IAPV), a single-stranded RNA virus, has a worldwide distribution and affects honeybees as well as other important pollinators. IAPV infection in honeybees has been successfully repressed by exploiting the RNA interference (RNAi) pathway of the insect's innate immune response with virus-specific double stranded RNA (dsRNA). Here we investigated the effect of IAPV infection in the bumblebee Bombus terrestris and its tissue tropism. B. terrestris is a common pollinator of wild flowers in Europe and is used for biological pollination in agriculture. Infection experiments demonstrated a similar pathology and tissue tropism in bumblebees as reported for honeybees. The effect of oral administration of virus-specific dsRNA was examined and resulted in an effective silencing of the virus, irrespective of the length. Interestingly, we observed that non-specific dsRNA was also efficient against IAPV. However further study is needed to clarify the precise mechanism behind this effect. Finally we believe that our data are indicative of the possibility to use dsRNA for a broad range viral protection in bumblebees.


Asunto(s)
Antivirales/administración & dosificación , Abejas/virología , Virus ARN/efectos de los fármacos , Virus ARN/fisiología , ARN Bicatenario/administración & dosificación , Replicación Viral/efectos de los fármacos , Administración Oral , Animales , Resultado del Tratamiento , Tropismo Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...