Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(5): 863-876, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565148

RESUMEN

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified causal CNVs for 171 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb. The causal CNVs consisted of 140 deletions, 15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as variants on the X chromosome to further advance the framework. We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Exoma , Enfermedades Raras , Humanos , Variaciones en el Número de Copia de ADN/genética , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Exoma/genética , Masculino , Femenino , Estudios de Cohortes , Pruebas Genéticas/métodos
2.
medRxiv ; 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37873196

RESUMEN

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and with new innovative methods can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the GREGoR consortium. Each family's CNV data was analyzed using the seqr platform and candidate CNVs classified using the 2020 ACMG/ClinGen CNV interpretation standards. We developed additional evidence criteria to address situations not covered by the current standards. The addition of CNV calling to exome analysis identified causal CNVs for 173 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb with estimates that 44% would not have been detected by standard chromosomal microarrays. The causal CNVs consisted of 141 deletions, 15 duplications, 4 suspected complex structural variants (SVs), 3 insertions and 10 complex SVs, the latter two groups being identified by orthogonal validation methods. We interpreted 153 CNVs as likely pathogenic/pathogenic and 20 CNVs as high interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.

3.
medRxiv ; 2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38328047

RESUMEN

Background: Causal variants underlying rare disorders may remain elusive even after expansive gene panels or exome sequencing (ES). Clinicians and researchers may then turn to genome sequencing (GS), though the added value of this technique and its optimal use remain poorly defined. We therefore investigated the advantages of GS within a phenotypically diverse cohort. Methods: GS was performed for 744 individuals with rare disease who were genetically undiagnosed. Analysis included review of single nucleotide, indel, structural, and mitochondrial variants. Results: We successfully solved 218/744 (29.3%) cases using GS, with most solves involving established disease genes (157/218, 72.0%). Of all solved cases, 148 (67.9%) had previously had non-diagnostic ES. We systematically evaluated the 218 causal variants for features requiring GS to identify and 61/218 (28.0%) met these criteria, representing 8.2% of the entire cohort. These included small structural variants (13), copy neutral inversions and complex rearrangements (8), tandem repeat expansions (6), deep intronic variants (15), and coding variants that may be more easily found using GS related to uniformity of coverage (19). Conclusion: We describe the diagnostic yield of GS in a large and diverse cohort, illustrating several types of pathogenic variation eluding ES or other techniques. Our results reveal a higher diagnostic yield of GS, supporting the utility of a genome-first approach, with consideration of GS as a secondary or tertiary test when higher-resolution structural variant analysis is needed or there is a strong clinical suspicion for a condition and prior targeted genetic testing has been negative.

4.
Hum Mutat ; 43(6): 698-707, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35266241

RESUMEN

Exome and genome sequencing have become the tools of choice for rare disease diagnosis, leading to large amounts of data available for analyses. To identify causal variants in these datasets, powerful filtering and decision support tools that can be efficiently used by clinicians and researchers are required. To address this need, we developed seqr - an open-source, web-based tool for family-based monogenic disease analysis that allows researchers to work collaboratively to search and annotate genomic callsets. To date, seqr is being used in several research pipelines and one clinical diagnostic lab. In our own experience through the Broad Institute Center for Mendelian Genomics, seqr has enabled analyses of over 10,000 families, supporting the diagnosis of more than 3,800 individuals with rare disease and discovery of over 300 novel disease genes. Here, we describe a framework for genomic analysis in rare disease that leverages seqr's capabilities for variant filtration, annotation, and causal variant identification, as well as support for research collaboration and data sharing. The seqr platform is available as open source software, allowing low-cost participation in rare disease research, and a community effort to support diagnosis and gene discovery in rare disease.


Asunto(s)
Genómica , Enfermedades Raras , Exoma , Humanos , Internet , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Programas Informáticos
5.
Mol Microbiol ; 86(6): 1393-403, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23078131

RESUMEN

Signal transduction proteins are often multi-domain proteins that arose through the fusion of previously independent proteins. How such a change in the spatial arrangement of proteins impacts their evolution and the selective pressures acting on individual residues is largely unknown. We explored this problem in the context of bacterial two-component signalling pathways, which typically involve a sensor histidine kinase that specifically phosphorylates a single cognate response regulator. Although usually found as separate proteins, these proteins are sometimes fused into a so-called hybrid histidine kinase. Here, we demonstrate that the isolated kinase domains of hybrid kinases exhibit a dramatic reduction in phosphotransfer specificity in vitro relative to canonical histidine kinases. However, hybrid kinases phosphotransfer almost exclusively to their covalently attached response regulator domain, whose effective concentration exceeds that of all soluble response regulators. These findings indicate that the fused response regulator in a hybrid kinase normally prevents detrimental cross-talk between pathways. More generally, our results shed light on how the spatial properties of signalling pathways can significantly affect their evolution, with additional implications for the design of synthetic signalling systems.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Evolución Molecular , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Fusión Génica , Histidina Quinasa , Fosfatos/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...