Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Br J Pharmacol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779706

RESUMEN

BACKGROUND AND PURPOSE: Excitotoxicity due to mitochondrial calcium (Ca2+) overloading can trigger neuronal cell death in a variety of pathologies. Inhibiting the mitochondrial calcium uniporter (MCU) has been proposed as a therapeutic avenue to prevent calcium overloading. Ru265 (ClRu(NH3)4(µ-N)Ru(NH3)4Cl]Cl3) is a cell-permeable inhibitor of the mitochondrial calcium uniporter (MCU) with nanomolar affinity. Ru265 reduces sensorimotor deficits and neuronal death in models of ischemic stroke. However, the therapeutic use of Ru265 is limited by the induction of seizure-like behaviours. EXPERIMENTAL APPROACH: We examined the effect of Ru265 on synaptic and neuronal function in acute brain slices and hippocampal neuron cultures derived from mice, in control and where MCU expression was genetically abrogated. KEY RESULTS: Ru265 decreased evoked responses from calyx terminals and induced spontaneous action potential firing of both the terminal and postsynaptic principal cell. Recordings of presynaptic Ca2+ currents suggested that Ru265 blocks the P/Q type channel, confirmed by the inhibition of currents in cells exogenously expressing the P/Q type channel. Measurements of presynaptic K+ currents further revealed that Ru265 blocked a KCNQ current, leading to increased membrane excitability, underlying spontaneous spiking. Ca2+ imaging of hippocampal neurons showed that Ru265 increased synchronized, high-amplitude events, recapitulating seizure-like activity seen in vivo. Importantly, MCU ablation did not suppress Ru265-induced increases in neuronal activity and seizures. CONCLUSIONS AND IMPLICATIONS: Our findings provide a mechanistic explanation for the pro-convulsant effects of Ru265 and suggest counter screening assays based on the measurement of P/Q and KCNQ channel currents to identify safe MCU inhibitors.

2.
Nat Commun ; 14(1): 7234, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945654

RESUMEN

Although beta-endorphinergic neurons in the hypothalamic arcuate nucleus (ARC) synthesize beta-endorphin (ß-EP) to alleviate nociceptive behaviors, the underlying regulatory mechanisms remain unknown. Here, we elucidated an epigenetic pathway driven by microRNA regulation of ß-EP synthesis in ARC neurons to control neuropathic pain. In pain-injured rats miR-203a-3p was the most highly upregulated miRNA in the ARC. A similar increase was identified in the cerebrospinal fluid of trigeminal neuralgia patients. Mechanistically, we found histone deacetylase 9 was downregulated following nerve injury, which decreased deacetylation of histone H3 lysine-18, facilitating the binding of NR4A2 transcription factor to the miR-203a-3p gene promoter, thereby upregulating miR-203a-3p expression. Further, increased miR-203a-3p was found to maintain neuropathic pain by targeting proprotein convertase 1, an endopeptidase necessary for the cleavage of proopiomelanocortin, the precursor of ß-EP. The identified mechanism may provide an avenue for the development of new therapeutic targets for neuropathic pain treatment.


Asunto(s)
MicroARNs , Neuralgia , Animales , Humanos , Ratas , Núcleo Arqueado del Hipotálamo/metabolismo , betaendorfina/genética , betaendorfina/metabolismo , Epigénesis Genética , MicroARNs/genética , MicroARNs/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Neuronas/metabolismo , Roedores/genética
3.
Mol Brain ; 16(1): 76, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37924146

RESUMEN

Familial hemiplegic migraine type-1 (FHM-1) is a form of migraine with aura caused by mutations in the P/Q-type (Cav2.1) voltage-gated calcium channel. Pregabalin, used clinically in the treatment of chronic pain and epilepsy, inhibits P/Q-type calcium channel activity and recent studies suggest that it may have potential for the treatment of migraine. Spreading Depolarization (SD) is a neurophysiological phenomenon that can occur during migraine with aura by propagating a wave of silenced neuronal function through cortex and sometimes subcortical brain structures. Here, utilizing an optogenetic stimulation technique optimized to allow for non-invasive initiation of cortical SD, we demonstrate that chronic pregabalin administration [12 mg/kg/day (s.c.)] in vivo increased the threshold for cortical spreading depolarization in transgenic mice harboring the clinically-relevant Cav2.1S218L mutation (S218L). In addition, chronic pregabalin treatment limited subcortical propagation of recurrent spreading depolarization events to the striatum and hippocampus in both wild-type and S218L mice. To examine contributing underlying mechanisms of action of chronic pregabalin, we performed whole-cell patch-clamp electrophysiology in CA1 neurons in ex vivo brain slices from mice treated with chronic pregabalin vs vehicle. In WT mice, chronic pregabalin produced a decrease in spontaneous excitatory postsynaptic current (sEPSC) amplitude with no effect on frequency. In contrast, in S218L mice chronic pregabalin produced an increase in sEPSC amplitude and decreased frequency. These electrophysiological findings suggest that in FHM-1 mice chronic pregabalin acts through both pre- and post-synaptic mechanisms in CA1 hippocampal neurons to elicit FHM-1 genotype-specific inhibitory action. The results highlight the potential of chronic pregabalin to limit recurrent SD to subcortical brain structures during pathophysiological events in both the genetically-normal and FHM-1 brain. The work further provides insights into FHM-1 pathophysiology and the potential for chronic pregabalin treatment to prevent SD in migraineurs.


Asunto(s)
Trastornos Migrañosos , Migraña con Aura , Ratones , Animales , Migraña con Aura/tratamiento farmacológico , Migraña con Aura/genética , Pregabalina/farmacología , Pregabalina/uso terapéutico , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/genética , Ratones Transgénicos , Hipocampo
4.
Cell Rep ; 42(10): 113128, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37742194

RESUMEN

Neuronal swelling during cytotoxic edema is triggered by Na+ and Cl- entry and is Ca2+ independent. However, the causes of neuronal death during swelling are unknown. Here, we investigate the role of large-conductance Pannexin-1 (Panx1) channels in neuronal death during cytotoxic edema. Panx1 channel inhibitors reduce and delay neuronal death in swelling triggered by voltage-gated Na+ entry with veratridine. Neuronal swelling causes downstream production of reactive oxygen species (ROS) that opens Panx1 channels. We confirm that ROS activates Panx1 currents with whole-cell electrophysiology and find scavenging ROS is neuroprotective. Panx1 opening and subsequent ATP release attract microglial processes to contact swelling neurons. Depleting microglia using the CSF1 receptor antagonist PLX3397 or blocking P2Y12 receptors exacerbates neuronal death, suggesting that the Panx1-ATP-dependent microglia contacts are neuroprotective. We conclude that cytotoxic edema triggers oxidative stress in neurons that opens Panx1 to trigger death but also initiates neuroprotective feedback mediated by microglia contacts.


Asunto(s)
Conexinas , Microglía , Microglía/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Conexinas/metabolismo , Muerte Celular , Adenosina Trifosfato/metabolismo
5.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240217

RESUMEN

Effective pain control is an underappreciated aspect of managing opioid withdrawal, and its absence presents a significant barrier to successful opioid detoxification. Accordingly, there is an urgent need for effective non-opioid treatments to facilitate opioid detoxification. l-Tetrahydropalmatine (l-THP) possesses powerful analgesic properties and is an active ingredient in botanical formulations used in Vietnam for the treatment of opioid withdrawal syndrome. In this study, rats receiving morphine (15 mg/kg, i.p.) for 5 days per week displayed a progressive increase in pain thresholds during acute 23 h withdrawal as assessed by an automated Von Frey test. A single dose of l-THP (5 or 7.5 mg/kg, p.o.) administered during the 4th and 5th weeks of morphine treatment significantly improves pain tolerance scores. A 7-day course of l-THP treatment in animals experiencing extended withdrawal significantly attenuates hyperalgesia and reduces the number of days to recovery to baseline pain thresholds by 61% when compared to vehicle-treated controls. This indicates that the efficacy of l-THP on pain perception extends beyond its half-life. As a non-opioid treatment for reversing a significant hyperalgesic state during withdrawal, l-THP may be a valuable addition to the currently limited arsenal of opioid detoxification treatments.


Asunto(s)
Hiperalgesia , Morfina , Ratas , Animales , Morfina/efectos adversos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/inducido químicamente , Analgésicos Opioides/efectos adversos , Umbral del Dolor
6.
Front Physiol ; 14: 1086243, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082241

RESUMEN

Background: T-type Ca2+ channels (Cav3) represent emerging therapeutic targets for a range of neurological disorders, including epilepsy and pain. To aid the development and optimisation of new therapeutics, there is a need to identify novel chemical entities which act at these ion channels. A number of synthetic cannabinoid receptor agonists (SCRAs) have been found to exhibit activity at T-type channels, suggesting that cannabinoids may provide convenient chemical scaffolds on which to design novel Cav3 inhibitors. However, activity at cannabinoid type 1 (CB1) receptors can be problematic because of central and peripheral toxicities associated with potent SCRAs. The putative SCRA MEPIRAPIM and its analogues were recently identified as Cav3 inhibitors with only minimal activity at CB1 receptors, opening the possibility that this scaffold may be exploited to develop novel, selective Cav3 inhibitors. Here we present the pharmacological characterisation of SB2193 and SB2193F, two novel Cav3 inhibitors derived from MEPIRAPIM. Methods: The potency of SB2193 and SB2193F was evaluated in vitro using a fluorometric Ca2+ flux assay and confirmed using whole-cell patch-clamp electrophysiology. In silico docking to the cryo-EM structure of Cav3.1 was also performed to elucidate structural insights into T-type channel inhibition. Next, in vivo pharmacokinetic parameters in mouse brain and plasma were determined using liquid chromatography-mass spectroscopy. Finally, anticonvulsant activity was assayed in established genetic and electrically-induced rodent seizure models. Results: Both MEPIRAPIM derivatives produced potent inhibition of Cav3 channels and were brain penetrant, with SB2193 exhibiting a brain/plasma ratio of 2.7. SB2193 was further examined in mouse seizure models where it acutely protected against 6 Hz-induced seizures. However, SB2193 did not reduce spontaneous seizures in the Scn1a +/- mouse model of Dravet syndrome, nor absence seizures in the Genetic Absence Epilepsy Rat from Strasbourg (GAERS). Surprisingly, SB2193 appeared to increase the incidence and duration of spike-and-wave discharges in GAERS animals over a 4 h recording period. Conclusion: These results show that MEPIRAPIM analogues provide novel chemical scaffolds to advance Cav3 inhibitors against certain seizure types.

7.
Brain Commun ; 4(2): fcac006, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35474853

RESUMEN

Cardiorespiratory arrest and death in mouse models of sudden unexpected death in epilepsy occur when spreading depolarization is triggered by cortical seizures and then propagates to the brainstem. However, the critical brain regions and the specific changes required to allow spreading depolarization to propagate to the brainstem under the relatively rare circumstances leading to a fatal seizure are unknown. We previously found that following cortical seizure-inducing electrical stimulation, spreading depolarization could occur in both the superior and inferior colliculi in Cacna1aS218L mice, but was never observed in wild-type animals or following non-seizure-inducing stimuli in Cacna1aS218L mice. Here, we show that optogenetic stimulation of the superior/inferior colliculi in Cacna1aS218L mice induces severe seizures, and resulting spreading depolarization in the superior/inferior colliculi that propagates to the brainstem and correlates with the respiratory arrest followed by cardiac arrest. Further, we show that neurons of the superior colliculus in Cacna1aS218L mice exhibit hyperexcitable properties that we propose underlie a distinct susceptibility to spreading depolarization. Our data suggest that the susceptibility of the superior colliculus to elicit fatal spreading depolarization is a result of either genetic or seizure-related alterations within the superior colliculus that may involve changes to structure, connectivity and/or excitability.

8.
Neurosci Bull ; 38(12): 1519-1540, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35484472

RESUMEN

The superior colliculus (SC), one of the most well-characterized midbrain sensorimotor structures where visual, auditory, and somatosensory information are integrated to initiate motor commands, is highly conserved across vertebrate evolution. Moreover, cell-type-specific SC neurons integrate afferent signals within local networks to generate defined output related to innate and cognitive behaviors. This review focuses on the recent progress in understanding of phenotypic diversity amongst SC neurons and their intrinsic circuits and long-projection targets. We further describe relevant neural circuits and specific cell types in relation to behavioral outputs and cognitive functions. The systematic delineation of SC organization, cell types, and neural connections is further put into context across species as these depend upon laminar architecture. Moreover, we focus on SC neural circuitry involving saccadic eye movement, and cognitive and innate behaviors. Overall, the review provides insight into SC functioning and represents a basis for further understanding of the pathology associated with SC dysfunction.


Asunto(s)
Movimientos Sacádicos , Colículos Superiores , Colículos Superiores/fisiología , Neuronas/fisiología
9.
Proc Natl Acad Sci U S A ; 119(14): e2117209119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35353623

RESUMEN

microRNA (miRNA)­mediated gene regulation has been studied as a therapeutic approach, but its functional regulatory mechanism in neuropathic pain is not well understood. Here, we identify that miRNA-32-5p (miR-32-5p) is a functional RNA in regulating trigeminal-mediated neuropathic pain. High-throughput sequencing and qPCR analysis showed that miR-32-5p was the most down-regulated miRNA in the injured trigeminal ganglion (TG) of rats. Intra-TG injection of miR-32-5p agomir or overexpression of miR-32-5p by lentiviral delivery in neurons of the injured TG attenuated established trigeminal neuropathic pain. miR-32-5p overexpression did not affect acute physiological pain, while miR-32-5p down-regulation in intact rats was sufficient to cause pain-related behaviors. Nerve injury increased the methylated histone occupancy of binding sites for the transcription factor glucocorticoid receptor in the miR-32-5p promoter region. Inhibition of the enzymes that catalyze H3K9me2 and H3K27me3 restored the expression of miR-32-5p and markedly attenuated pain behaviors. Further, miR-32-5p­targeted Cav3.2 T-type Ca2+ channels and decreased miR-32-5p associated with neuropathic pain caused an increase in Cav3.2 protein expression and T-type channel currents. Conversely, miR-32-5p overexpression in injured TG suppressed the increased expression of Cav3.2 and reversed mechanical allodynia. Together, we conclude that histone methylation-mediated miR-32-5p down-regulation in TG neurons regulates trigeminal neuropathic pain by targeting Cav3.2 channels.


Asunto(s)
MicroARNs , Neuralgia , Animales , Regulación hacia Abajo , Ganglios Espinales/metabolismo , Histonas/genética , Histonas/metabolismo , Metilación , MicroARNs/genética , MicroARNs/metabolismo , Neuralgia/metabolismo , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/metabolismo
10.
IBRO Neurosci Rep ; 12: 121-130, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35128516

RESUMEN

Childhood absence epilepsy (CAE) is a non-convulsive seizure disorder primarily in children characterized by absence seizures. Absence seizures consist of 2.5-5 Hz spike-and-wave discharges (SWDs) detectable using electroencephalography (EEG). Current drug treatments are only partially effective and adverse side effects have spurred research into alternative treatment approaches. Recent research shows that positive allosteric modulation of the type-1 cannabinoid receptor (CB1R) reduces the frequency and duration of SWDs in Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a model that recapitulates the SWDs in CAE. Here, we tested additional CB1R ago-PAMs, GAT591 and GAT593, for their potential in alleviating SWD activity in GAERS. In vitro experiments confirm that GAT591 and GAT593 exhibit increased potency and selectivity in cell cultures and behave as CB1R allosteric agonists and PAMs. To assess drug effects on SWDs, bilateral electrodes were surgically implanted in the somatosensory cortices of male GAERS and EEGs recorded for 4 h following systemic administration of GAT591 or GAT593 (1.0, 3.0 and 10.0 mg/kg). Both GAT591 and GAT593 dose-dependently reduced total SWD duration during the recording period. The greatest effect on SWD activity was observed at 10.0 mg/kg doses, with GAT591 and GAT593 reducing seizure duration by 36% and 34% respectively. Taken together, these results support the continued investigation of CB1R PAMs as a potential therapeutic to alleviate SWDs in absence epilepsy.

11.
eNeuro ; 9(1)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35064022

RESUMEN

Postnatal CNS development is fine-tuned to drive the functional needs of succeeding life stages; accordingly, the emergence of sensory and motor functions, behavioral patterns and cognitive abilities relies on a complex interplay of signaling pathways. Strictly regulated Ca2+ signaling mediated by L-type channels (LTCCs) is crucial in neural circuit development and aberrant increases in neuronal LTCC activity are linked to neurodevelopmental and psychiatric disorders. In the amygdala, a brain region that integrates signals associated with aversive and rewarding stimuli, LTCCs contribute to NMDA-independent long-term potentiation (LTP) and are required for the consolidation and extinction of fear memory. In vitro studies have elucidated distinct electrophysiological and synaptic properties characterizing the transition from immature to functionally mature basolateral subdivision of the amygdala (BLA) principal neurons. Further, acute increase of LTCC activity selectively regulates excitability and spontaneous synaptic activity in immature BLA neurons, suggesting an age-dependent regulation of BLA circuitry by LTCCs. This study aimed to elucidate whether early life alterations in LTCC activity subsequently affect synaptic strength and amygdala-dependent behaviors in early adulthood. In vivo intra-amygdala injection of an LTCC agonist at a critical period of postnatal neurodevelopment in male rat pups was used to examine synaptic plasticity of BLA excitatory inputs, expression of immediate early genes (IEGs) and glutamate receptors, as well as anxiety and social affiliation behaviors at a juvenile age. Results indicate that enhanced LTCC activity in immature BLA principal neurons trigger persistent changes in the developmental trajectory to modify membrane properties and synaptic LTP at later stages, concomitant with alterations in amygdala-related behavioral patterns.


Asunto(s)
Complejo Nuclear Basolateral , Adulto , Amígdala del Cerebelo/fisiología , Animales , Complejo Nuclear Basolateral/fisiología , Miedo/fisiología , Humanos , Potenciación a Largo Plazo , Masculino , Plasticidad Neuronal/fisiología , Ratas
12.
Eur J Neurosci ; 55(4): 1063-1078, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33370468

RESUMEN

There is significant interest in the use of cannabinoids for the treatment of many epilepsies including absence epilepsy (AE). Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model many aspects of AE including the presence of spike-and-wave discharges (SWDs) on electroencephalogram (EEG) and behavioral comorbidities, such as elevated anxiety. However, the effects of cannabis plant-based phytocannabinoids have not been tested in GAERS. Therefore, we investigated how SWDs in GAERS are altered by the two most common phytocannabinoids, Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), and exposure to smoke from two different chemovars of cannabis. Animals were implanted with bipolar electrodes in the somatosensory cortex and EEGs were recorded for 2 hr. Injected THC (1-10 mg/kg, i.p.) dose-dependently increased SWDs to over 200% of baseline. In contrast, CBD (30-100 mg/kg, i.p.) produced a ~50% reduction in SWDs. Exposure to smoke from a commercially available chemovar of high-THC cannabis (Mohawk, Aphria Inc.) increased SWDs whereas a low-THC/high-CBD chemovar of cannabis (Treasure Island, Aphria Inc.) did not significantly affect SWDs in GAERS. Pre-treatment with a CB1R antagonist (SR141716A) did not prevent the high-THC cannabis smoke from increasing SWDs, suggesting that the THC-mediated increase may not be CB1R-dependent. Plasma concentrations of THC and CBD were similar to previously reported values following injection and smoke exposure. Compared to injected CBD, it appears Treasure Island did not increase plasma levels sufficiently to observe an anti-epileptic effect. Together these experiments provide initial evidence that acute phytocannabinoid administration exerts the biphasic modulation of SWDs and may differentially impact patients with AE.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Epilepsia Tipo Ausencia , Animales , Cannabidiol/farmacología , Agonistas de Receptores de Cannabinoides , Cannabinoides/farmacología , Dronabinol , Electroencefalografía , Epilepsia Tipo Ausencia/tratamiento farmacológico , Epilepsia Tipo Ausencia/genética , Humanos , Ratas , Ratas Wistar
13.
Br J Pharmacol ; 178 Suppl 1: S157-S245, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34529831

RESUMEN

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15539. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Canales Iónicos , Bases del Conocimiento , Ligandos , Receptores Acoplados a Proteínas G
14.
Sci Rep ; 11(1): 15180, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34312446

RESUMEN

Kv1.1 containing potassium channels play crucial roles towards dampening neuronal excitability. Mice lacking Kv1.1 subunits (Kcna1-/-) display recurrent spontaneous seizures and often exhibit sudden unexpected death. Seizures in Kcna1-/- mice resemble those in well-characterized models of temporal lobe epilepsy known to involve limbic brain regions and spontaneous seizures result in enhanced cFos expression and neuronal death in the amygdala. Yet, the functional alterations leading to amygdala hyperexcitability have not been identified. In this study, we used Kcna1-/- mice to examine the contributions of Kv1.1 subunits to excitability in neuronal subtypes from basolateral (BLA) and central lateral (CeL) amygdala known to exhibit distinct firing patterns. We also analyzed synaptic transmission properties in an amygdala local circuit predicted to be involved in epilepsy-related comorbidities. Our data implicate Kv1.1 subunits in controlling spontaneous excitatory synaptic activity in BLA pyramidal neurons. In the CeL, Kv1.1 loss enhances intrinsic excitability and impairs inhibitory synaptic transmission, notably resulting in dysfunction of feed-forward inhibition, a critical mechanism for controlling spike timing. Overall, we find inhibitory control of CeL interneurons is reduced in Kcna1-/- mice suggesting that basal inhibitory network functioning is less able to prevent recurrent hyperexcitation related to seizures.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Canal de Potasio Kv.1.1/metabolismo , Animales , Complejo Nuclear Basolateral/metabolismo , Núcleo Amigdalino Central/metabolismo , Modelos Animales de Enfermedad , Retroalimentación Fisiológica , Femenino , Canal de Potasio Kv.1.1/deficiencia , Canal de Potasio Kv.1.1/genética , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Inhibición Neural/fisiología , Células Piramidales/metabolismo , Convulsiones/metabolismo , Transmisión Sináptica/fisiología
15.
Br J Pharmacol ; 178(17): 3517-3532, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33871884

RESUMEN

BACKGROUND AND PURPOSE: T-type voltage-gated calcium channels are an emerging therapeutic target for neurological disorders including epilepsy and pain. Inhibition of T-type channels reduces the excitability of peripheral nociceptive sensory neurons and reverses pain hypersensitivity in male rodent pain models. However, administration of peripherally restricted T-type antagonists failed to show efficacy in multiple clinical and preclinical pain trials, suggesting that inhibition of peripheral T-type channels alone may be insufficient for pain relief. EXPERIMENTAL APPROACH: We utilized the selective and CNS-penetrant T-type channel antagonist, Z944, in electrophysiological, calcium imaging and behavioural paradigms to determine its effect on lamina I neuron excitability and inflammatory pain behaviours. KEY RESULTS: Voltage-clamp recordings from lamina I spinal neurons of adult rats revealed that approximately 80% of neurons possess a low threshold T-type current, which was blocked by Z944. Due to this highly prevalent T-type current, Z944 potently blocked action-potential evoked somatic and dendritic calcium transients in lamina I neurons. Moreover, application of Z944 to spinal cord slices attenuated action potential firing rates in over half of laminae I/II neurons. Finally, we found that intraperitoneal injection of Z944 (1-10 mg·kg-1 ) dose-dependently reversed mechanical allodynia in the complete Freund's adjuvant model of persistent inflammatory pain, with a similar magnitude and time course of analgesic effects between male and female rats. CONCLUSION AND IMPLICATIONS: T-type calcium channels critically shape the excitability of lamina I pain processing neurons and inhibition of these channels by the clinical stage antagonist Z944 potently reverses pain hypersensitivity across sexes.


Asunto(s)
Canales de Calcio Tipo T , Animales , Bloqueadores de los Canales de Calcio/farmacología , Femenino , Masculino , Dolor/tratamiento farmacológico , Piperidinas , Ratas , Asta Dorsal de la Médula Espinal
16.
Neuropharmacology ; 190: 108553, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33845076

RESUMEN

Childhood Absence Epilepsy (CAE) accounts for approximately 10% of all pediatric epilepsies. Current treatments for CAE are ineffective in approximately 1/3 of patients and can be associated with severe side effects such as hepatotoxicity. Certain cannabinoids, such as cannabidiol (CBD), have shown promise in the treatment of pediatric epilepsies. However, CBD remains limited or prohibited in many jurisdictions, and has not been shown to have efficacy in CAE. Modulation of the type 1 cannabinoid receptor (CB1R) may provide more desirable pharmacological treatments. Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model many aspects of CAE, including cortical spike and wave discharges (SWDs). We have recently demonstrated that Δ9-tetrahydrocannabinol (THC) increases SWDs in GAERS whereas CBD decreases these events. Here, we characterized aspects of the endocannabinoid system in brain areas relevant to seizures in GAERS and tested whether positive allosteric modulators (PAMs) of CB1R reduced SWDs. Both female and male GAERS had reduced (>50%) expression of CB1R and elevated levels of the endocannabinoid 2-AG in cortex compared to non-epileptic controls (NEC). We then administered the CB1R PAMs GAT211 and GAT229 to GAERS implanted with cortical electrodes. Systemic administration of GAT211 to male GAERS reduced SWDs by 40%. Systemic GAT229 administration reduced SWDs in female and male GAERS. Intracerebral infusion of GAT229 into the cortex of male GAERS reduced SWDs by >60% in a CB1R-dependent manner that was blocked by SR141716A. Together, these experiments identify altered endocannabinoid tone in GAERS and suggest that CB1R PAMs should be explored for treatment of absence seizures.


Asunto(s)
Ondas Encefálicas/efectos de los fármacos , Agonistas de Receptores de Cannabinoides/farmacología , Epilepsia Tipo Ausencia/fisiopatología , Indoles/farmacología , Receptor Cannabinoide CB1/efectos de los fármacos , Regulación Alostérica , Animales , Ácidos Araquidónicos/metabolismo , Ondas Encefálicas/fisiología , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Endocannabinoides/metabolismo , Epilepsia Tipo Ausencia/genética , Femenino , Glicéridos/metabolismo , Masculino , Ratas , Receptor Cannabinoide CB1/metabolismo
17.
bioRxiv ; 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32908977

RESUMEN

Genome sequencing has been widely deployed to study the evolution of SARS-CoV-2 with more than 90,000 genome sequences uploaded to the GISAID database. We published a method for SARS-CoV-2 genome sequencing (https://www.protocols.io/view/ncov-2019-sequencing-protocol-bbmuik6w) online on January 22, 2020. This approach has rapidly become the most popular method for sequencing SARS-CoV-2 due to its simplicity and cost-effectiveness. Here we present improvements to the original protocol: i) an updated primer scheme with 22 additional primers to improve genome coverage, ii) a streamlined library preparation workflow which improves demultiplexing rate for up to 96 samples and reduces hands-on time by several hours and iii) cost savings which bring the reagent cost down to £10 per sample making it practical for individual labs to sequence thousands of SARS-CoV-2 genomes to support national and international genomic epidemiology efforts.

19.
Behav Brain Res ; 393: 112747, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32504730

RESUMEN

The T-type calcium channel blocker, Z944, has been used as a pharmacological tool to assess T-type calcium channel function and examined for use as an anti-epileptic. As Z944 affects fear learning and memory in a rodent model of absence epilepsy, it is important to determine the effect of Z944 on learning and memory in a non-disease outbred rodent strain. This study examined the dose-dependent effects (5 mg/kg, 10 mg/kg, i.p.) of acute systemic treatment with Z944 on the learning and memory of fear conditioning and extinction in male Wistar rats. Z944 administered prior to the acquisition of fear conditioning significantly increased freezing prior to acquisition and extinction, during acquisition, and impaired recall of fear memory 24 h later. These findings suggest that T-type calcium channel activity may be required during associative learning for intact long-term memory. Enhanced fear behaviour observed prior to acquisition and extinction, and during acquisition could reflect an increase in anxiety, however, further testing is needed to determine the effect of Z944 on anxiety during fear conditioning and extinction. The use of Z944 for therapeutic purposes should consider the potential effects of Z944 on learning and memory in clinical populations.


Asunto(s)
Aprendizaje por Asociación/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/metabolismo , Condicionamiento Psicológico/efectos de los fármacos , Miedo/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Miedo/fisiología , Masculino , Recuerdo Mental/efectos de los fármacos , Piperidinas/farmacología , Ratas , Ratas Wistar
20.
Gigascience ; 9(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32520351

RESUMEN

BACKGROUND: Riverine ecosystems are biogeochemical powerhouses driven largely by microbial communities that inhabit water columns and sediments. Because rivers are used extensively for anthropogenic purposes (drinking water, recreation, agriculture, and industry), it is essential to understand how these activities affect the composition of river microbial consortia. Recent studies have shown that river metagenomes vary considerably, suggesting that microbial community data should be included in broad-scale river ecosystem models. But such ecogenomic studies have not been applied on a broad "aquascape" scale, and few if any have applied the newest nanopore technology. RESULTS: We investigated the metagenomes of 11 rivers across 3 continents using MinION nanopore sequencing, a portable platform that could be useful for future global river monitoring. Up to 10 Gb of data per run were generated with average read lengths of 3.4 kb. Diversity and diagnosis of river function potential was accomplished with 0.5-1.0 ⋅ 106 long reads. Our observations for 7 of the 11 rivers conformed to other river-omic findings, and we exposed previously unrecognized microbial biodiversity in the other 4 rivers. CONCLUSIONS: Deeper understanding that emerged is that river microbial consortia and the ecological functions they fulfil did not align with geographic location but instead implicated ecological responses of microbes to urban and other anthropogenic effects, and that changes in taxa manifested over a very short geographic space.


Asunto(s)
Metagenoma , Metagenómica/métodos , Consorcios Microbianos , Microbiota , Plancton/genética , Biodiversidad , Secuenciación de Nanoporos , Ríos/microbiología , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...