Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Matter ; 5(11): 4076-4091, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36034972

RESUMEN

Surfaces contaminated with bacteria and viruses contribute to the transmission of infectious diseases and pose a significant threat to global public health. Modern day disinfection either relies on fast-acting (>3-log reduction within a few minutes), yet impermanent, liquid-, vapor-, or radiation-based disinfection techniques, or long-lasting, but slower-acting, passive antimicrobial surfaces based on heavy metal surfaces, or metallic nanoparticles. There is currently no surface that provides instant and persistent antimicrobial efficacy against a broad spectrum of bacteria and viruses. In this work, we describe a class of extremely durable antimicrobial surfaces incorporating different plant secondary metabolites that are capable of rapid disinfection (>4-log reduction) of current and emerging pathogens within minutes, while maintaining persistent efficacy over several months and under significant environmental duress. We also show that these surfaces can be readily applied onto a variety of desired substrates or devices via simple application techniques such as spray, flow, or brush coating.

2.
Lab Chip ; 20(23): 4413-4419, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-32959038

RESUMEN

Coliforms are one of the most common families of bacteria responsible for water contamination. Certain coliform strains can be extremely toxic, and even fatal if consumed. Current technologies for coliform detection are expensive, require multiple complicated steps, and can take up to 24 hours to produce accurate results. Recently, open-channel, paper-based microfluidic devices have become popular for rapid, inexpensive, and accurate bioassays. In this work, we have created an integrated microfluidic coliform lysis and detection device by fabricating customizable omniphilic regions via direct printing of omniphilic channels on an omniphobic, fluorinated paper. This paper-based device is the first of its kind to demonstrate successful cell lysing on-chip, as it can allow for the flow and control of both high and low surface tension liquids, including different cell lysing agents. The fabricated microfluidic device was able to successfully detect E. coli, via the presence of the coliform-specific enzyme, ß-galactosidase, at a concentration as low as ∼104 CFU mL-1. Further, E. coli at an initial concentration of 1 CFU mL-1 could be detected after only 6 hours of incubation. We believe that these devices can be readily utilized for real world E. coli contamination detection in multiple applications, including food and water safety.


Asunto(s)
Escherichia coli , Dispositivos Laboratorio en un Chip , Microfluídica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...