Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Epileptic Disord ; 26(2): 188-198, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38279944

RESUMEN

OBJECTIVE: To develop and validate a method for long-term (24-h) objective quantification of absence seizures in the EEG of patients with childhood absence epilepsy (CAE) in their real home environment using a wearable device (waEEG), comparing automatic detection methods with auditory recognition after seizure sonification. METHODS: The waEEG recording was acquired with two scalp electrodes. Automatic analysis was performed using previously validated software (Persyst® 14) and then fully reviewed by an experienced clinical neurophysiologist. The EEG data were converted into an audio file in waveform format with a 60-fold time compression factor. The sonified EEG was listened to by three inexperienced observers and the number of seizures and the processing time required for each data set were recorded blind to other data. Quantification of seizures from the patient diary was also assessed. RESULTS: Eleven waEEG recordings from seven CAE patients with an average age of 8.18 ± 1.60 years were included. No differences in the number of seizures were found between the recordings using automated methods and expert audio assessment, with significant correlations between methods (ρ > .89, p < .001) and between observers (ρ > .96, p < .001). For the entire data set, the audio assessment yielded a sensitivity of .830 and a precision of .841, resulting in an F1 score of .835. SIGNIFICANCE: Auditory waEEG seizure detection by lay medical personnel provided similar accuracy to post-processed automatic detection by an experienced clinical neurophysiologist, but in a less time-consuming procedure and without the need for specialized resources. Sonification of long-term EEG recordings in CAE provides a user-friendly and cost-effective clinical workflow for quantifying seizures in clinical practice, minimizing human and technical constraints.


Asunto(s)
Epilepsia Tipo Ausencia , Dispositivos Electrónicos Vestibles , Humanos , Niño , Electroencefalografía/métodos , Convulsiones/diagnóstico , Epilepsia Tipo Ausencia/diagnóstico , Electrodos
2.
AIMS Neurosci ; 10(4): 300-314, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188006

RESUMEN

Temporal lobe epilepsy (TLE) is the most prevalent form of epilepsy, through the neuronal mechanisms of this syndrome remain elusive. In addition to the temporal lobe structures, it was found that the basal forebrain cholinergic cells are also involved in epileptogenesis. However, little is known about the involvement of the basal forebrain GABAergic neurons in epilepsy; despite this, they largely project to the temporal lobe and are crucial for the regulation of the hippocampal circuitry. In this study, we assessed epilepsy-induced changes in parvalbumin (PARV) immunoreactive neurons of the medial septum (MS) and of the magnocellular preoptic nucleus (MCPO) using the kainic acid (KA) model in rats. In addition, we estimated the respective changes in the cholinergic varicosities in the MS, where we observed a significant reduction in the PARV cell number (12849 ± 2715 vs. 9372 ± 1336, p = .029) and density (16.2 ± 2.62 vs. 10.5 ± 1.00 per .001 mm3, p =.001), and an increase in the density of cholinergic varicosities (47.9 ± 11.1 vs. 69.4 ± 17.8 per 30,000 µm2, p =.036) in KA-treated animals. In the MCPO, these animals showed a significant increase in somatic volume (827.9 ± 235.2 µm3 vs. 469.9 ± 79.6 µm3, p = .012) and total cell number (2268.6 ± 707.1 vs. 1362.4 ± 262.0, p =.028). These results show that the basal forebrain GABAergic cell populations undergo numerical and morphological changes in epileptic animals, which may contribute to an increased vulnerability of brain circuits to epilepsy and epilepsy-related functional impairments.

3.
Epileptic Disord ; 24(6): 1095-1101, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36193020

RESUMEN

Reading epilepsy recruits critical language-related areas, with synchronization and subsequent spreading of excitation in response to the epileptogenic stimulus. The mechanism by which possible generalized discharges result in the expression of bilateral or unilateral clinical symptoms remains controversial. The cortical and subcortical areas involved may constitute part of the normal reading network, such as the visual word form area (VWFA). A right-handed, 59-year-old man was diagnosed with epilepsy at the age of 15 after tonic-clonic seizures. Later, the patient described myoclonic jerks of the masticatory and perioral muscles while reading. A multimodal approach with magnetic resonance imaging and ambulatory and video-electroencephalogram was used for seizure characterization and source analysis. A left hemisphere spontaneous occipital-temporal epileptic focus, activated by reading, was observed, spreading broadly throughout frontal and temporal language networks. There was an abnormally increased cortical response to visual word presentation in comparison to pseudowords. Spatial localization of spike sources suggested a close association between the primary epileptic focus and the VWFA. This epileptiform activity seems to be selectively triggered at an early stage of lexical processing, with a functional connection between the epileptic network and the VWFA. This multimodal and functional connectivity approach could be helpful in determining the epileptic network in reading epilepsy.


Asunto(s)
Epilepsia Refleja , Mapeo Encefálico , Electroencefalografía , Humanos , Lenguaje , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...