Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Intervalo de año de publicación
1.
PeerJ ; 9: e11461, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249482

RESUMEN

BACKGROUND: Sugarcane is a crop of global importance and has been expanding to areas with soils containing high levels of exchangeable aluminum (Al), which is a limiting factor for crop development in acidic soils. The study of the sugarcane physiological and nutritional behavior together with patterns of gene expression in response to Al stress may provide a basis for effective strategies to increase crop productivity in acidic soils. METHODS: Sugarcane cultivars were evaluated for physiological parameters (photosynthesis, stomatal conductance, and transpiration), nutrient (N, P, K, Ca, Mg, and S) and Al contents in leaves and roots and gene expression, of the genes MDH, SDH by qPCR, both related to the production of organic acids, and SOD, related to oxidative stress. RESULTS: Brazilian sugarcane RB867515, RB928064, and RB935744 cultivars exhibited very different responses to induced stress by Al. Exposure to Al caused up-regulation (SOD and MDH) or down-regulation (SDH, MDH, and SOD), depending on the cultivar, Al level, and plant tissue. The RB867515 cultivar was the most Al-tolerant, showing no decline of nutrient content in plant tissue, photosynthesis, transpiration, and stomatal conductance after exposure to Al; it exhibited the highest Al content in the roots, and showed important MDH and SOD gene expression in the roots. RB928064 only showed low expression of SOD in roots and leaves, while RB935744 showed important expression of the SOD gene only in the leaves. Sugarcane cultivars were classified in the following descending Al-tolerance order: RB867515 > RB928064 = RB935744. These results may contribute to the obtention of Al-tolerant cultivars that can play their genetic potential in soils of low fertility and with low demand for agricultural inputs; the selection of potential plants for breeding programs; the elucidation of Al detoxification mechanisms employed by sugarcane cultivars.

2.
J Environ Manage ; 285: 112044, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33676118

RESUMEN

Soil solid-solution distribution coefficients (Kd) are used in predictive environmental models to assess public health risks. This study was undertaken to determine Kd for potentially toxic elements (PTE) Cd, Co, Cr, Cu, Ni, Pb, and Zn in topsoil samples (0-20 cm) from 30 soils in the State of São Paulo, southeastern Brazil. Batch sorption experiments were carried out, and PTE concentrations in the equilibrium solution were determined by High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICPMS). Sorption data was fitted to the Freundlich model. The Kd values were either obtained directly from the slope coefficients of C-type isotherms or derived from the slope of the straight line tangent to the non-linear L-type and H-type isotherms. Stepwise multiple regression models were used to estimate the Kd values through the combined effect of a number of soil attributes [pHH2O, effective cation exchange capacity (ECEC) and contents of clay, organic carbon, and Fe (oxy)hydroxides]. The smallest variation in Kd values was recorded for Cu (105-4598 L kg-1), Pb (121-7020 L kg-1), Ni (6-998 L kg-1), as variation across four orders of magnitude was observed for Cd (7-14,339 L kg-1), Co (2-34,473 L kg-1), and Cr (1-21,267 L kg-1). The Kd values for Zn were between 5 and 123,849 L kg-1. According to median values of Kd, PTE were sorbed in the following preferential order: Pb > Cu > Cd > Ni > Zn > Cr > Co. The Kd values were best predicted using metal-specific and highly significant (p < 0.001) linear regressions that included pHH2O, ECEC, and clay contents. The Kd values reported in this study are a novel result that can help minimize erroneous estimates and improve both environmental and public health risk assessments under humid tropical edaphoclimatic conditions.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Brasil , Monitoreo del Ambiente , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis
3.
Int J Biol Macromol ; 165(Pt B): 1717-1726, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33069823

RESUMEN

Biodegradable films are a promising strategy to reduce the environmental impact caused by conventional plastics commonly used in agriculture. This study focused on the production and characterization of Konjac glucomannan (KGM) and alginate (ALG) based films enriched with sugarcane vinasse (VIN), a nutrient-rich wastewater generated in large volumes by the sugar-ethanol producing industries. ALG, KGM and ALG/KGM blended (50:50) films were produced by casting and treated with calcium ions (Ca2+) (ALG films) and a combination of Ca2+, alkali, and ethanol (KGM and ALG/KGM films). Vinasse addition tended to reduce transparency and water resistance of the films and had less effect on their mechanical properties. Crosslinking of ALG films resulted in enhanced mechanical properties and reduced moisture content, water solubility, swelling, water vapor permeability, and flexibility. KGM films were less impacted by crosslinking/deacetylation but showed improved water resistance while maintain a high degree of swelling (290% and 185% for KGM and KGM/VIN films respectively). Blended films exhibited characteristic properties of the two biopolymers and adequate compatibility indicated by Fourier transform infrared spectroscopy (FTIR) and morphologies. Vinasse-added ALG/KGM films represent a novel nutrient-enriched, bio-based material for agricultural applications and could help to face the environmental challenges imposed by vinasse disposal.


Asunto(s)
Alginatos/química , Fenómenos Químicos , Mananos/química , Saccharum/química , Residuos/análisis , Acetilación , Reactivos de Enlaces Cruzados/química , Módulo de Elasticidad , Humedad , Luz , Permeabilidad , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Vapor , Temperatura , Resistencia a la Tracción
4.
Waste Manag ; 108: 144-153, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32353779

RESUMEN

This study evaluated the physicochemical and morphological properties of pectin and chitosan particles combined with sugarcane vinasse for soil fertilization applications. Particles were obtained by adding the biopolymeric solutions (pectin or chitosan solution) dropwise into the crosslinking solutions (calcium chloride 1% in ethanolic solution or tripolyphosphate 5% aqueous solution) followed by drying. Vinasse enhanced pectin gel stability improving pectin/vinasse particle properties. Physicochemical characterization indicated that vinasse nutrients were properly incorporated in both pectin and chitosan matrices. Particles showed spherical shape, with an average diameter of 3 and 2 mm for the pectin and chitosan particles with vinasse, respectively. Chitosan particles, compared to pectin, showed lower swelling capacity and solubility and higher mechanical resistance indicating a denser and more compact polymer network. Both particles were able to hinder water evaporation rates from sandy soil under water stress conditions. Biobased particles with vinasse added show potential to be applied as soil fertilizer representing an alternative to use and disposal of this expressive wastewater from sugar and alcohol industries.


Asunto(s)
Saccharum , Contaminantes del Suelo , Biopolímeros , Fertilizantes , Suelo
5.
Carbohydr Polym ; 203: 322-330, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30318219

RESUMEN

High methoxyl pectin was used as biopolymeric matrix to produce a novel slow release soil fertilizer added with sugarcane vinasse and lipid extracted microalgal (Desmodesmus subspicatus) biomass residue (LMBR). Vinasse acted as the biopolymer solvent, providing greater stability to pectin gel, and as a source of nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg). LMBR (0.5%) was considered a complementary source of N and micronutrients, copper (Cu), iron (Fe) and zinc (Zn). Compared to blank pectin particles, the particles with vinasse and LMBR showed homogeneous polymer matrix, spherical shapes, higher soluble matter release and enhanced mechanical properties. Scanning electron microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) analysis indicated the incorporation of microalgal biomass and nutrients from vinasse. Higher rates of biodegradation as well as larger degree of mineralization were found over a period of 36 days for vinasse and LMBR particles. These particles exhibit good perspectives as an alternative fertilizer for agriculture applications and represent an innovative solution for vinasse and LMBR final disposal.


Asunto(s)
Chlorophyta/química , Fertilizantes , Pectinas/química , Saccharum/química , Biodegradación Ambiental , Biomasa , Concentración de Iones de Hidrógeno , Tamaño de la Partícula
6.
J Environ Manage ; 221: 10-19, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29787968

RESUMEN

Quality reference values (QRV) for potentially toxic elements (PTE) in soils are established as a tool for prevention and monitoring of soil pollution. These values should be periodically revised in order to ensure soil safety for agricultural purposes. Brazil is market leader for several commodities; therefore, the safety of Brazilian soils is of worldwide strategic importance. The objective of this study was to determine the natural background concentrations and the QRV for As, Ba, Cd, Cr, Ni, Pb, Se, and Zn by investigating 30 representative pedotypes in the São Paulo State, one of the most important agro-industry economy at worldwide level. Multivariate statistical analysis was applied to determine the sources of PTE and their variability. The mean natural background concentrations of PTE in the soils were generally lower to those reported in literature. QRV, calculated for each element as the 75th and 90th percentiles, were lower (75th for As, Cd, Pb, and Zn), similar (75th for Ba, Cr, and Se) or above (90th for Ba, Cr, and Se and 75-90th for Ni) those previously proposed by the Brazilian environmental protection agencies. The results indicate that 75th percentile may be too restrictive. The PTE in the investigated soils appear to have comes mainly from two primary natural sources: a prevalent one of geogenic and a secondary of pedogenic origin. These results confirm the predominant natural source of selected PTE in the investigated soils, thus sustaining the possibility of using the data set to develop QRV for the State of São Paulo.


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo/análisis , Brasil , Monitoreo del Ambiente , Valores de Referencia , Suelo
7.
Ciênc. agrotec., (Impr.) ; 41(1): 32-41, Jan.-Feb. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-890602

RESUMEN

ABSTRACT Although nickel (Ni) has both important potential benefits and toxic effects in the environment, its behavior in tropical soils has not been well studied. Nickel adsorption-desorption in topsoil and subsoil samples of an acric Oxisol was studied at three pH values (from 3.0 to 8.0). Adsorption-desorption isotherms were elaborated from experiments with increasing Ni concentration (5 to 100 mg L-1), during 0, 4, and 12 weeks, using CaCl2 0.01 and 0.1 M as electrolytic support in order to also verify the effect of Ni-soil time contact and of ionic strength on the reaction. Experimental results of Ni adsorption fitted Langmuir model, which indicated that maximum Ni adsorption (71,440 mg kg-1) occurred at subsoil, after 12 weeks. Nickel affinity (KL) was also greater at subsoil (1.0 L kg-1). The Ni adsorption in the topsoil samples was higher, due to its lower point of zero salt effect (PZSE) and higher organic matter content. The increase in soil pH resulted in the increase of Ni adsorption. Nickel desorbed less from soil samples incubated for 4 or 12 weeks, suggesting that Ni interactions with colloidal particles increase over time. The amount of Ni desorbed increased with increasing ionic strength in both the topsoil and subsoil soil samples. Finally, adsorption-desorption hysteresis was clearly observed. Soil pH, ionic strength of soil solution and the Ni-soil contact time should be considered as criteria for selecting the areas for disposal of residues containing Ni or to compose remediation strategies for acric soils contaminated with Ni.


RESUMO Apesar de o níquel (Ni) ser um elemento importante no ambiente, tanto pelo seu potencial benéfico, como tóxico, informações sobre o seu comportamento em solos tropicais são escassas. Reações de adsorção-dessorção de Ni em amostras superficias e subsuperficias de um Latossolo ácrico foram estudadas em três valores de pH do solo, variando de 3,0 a 8,0. Isotermas de adsorção-dessorção foram elaboradas a partir de experimentos com concentrações crescentes de Ni (5 a 100 mg L-1), durante 0, 4 e 12 semanas, usando CaCl2 0.01 e 0.1 M como eletrólito suporte para verificar o efeito do tempo de contato e da força iônica sobre a reação. Resultados experimentais foram adequadamente ajustados pelo modelo de Langmuir, o qual apontou que a máxima adsorção de Ni (71.440 mg kg-1) ocorreu após 12 semanas de contato do Ni com amostras do subsolo. A afinidade do Ni também foi maior pelas amostras de subsolo (1,0 L kg-1). A adsorção de Ni foi maior nas amostras superficiais, devido ao menor ponto de efeito salino nulo e ao maior tero de matéria orgânica. A elevação do pH do solo aumentou a adsorção de Ni. Houve menos dessorção de Ni das amostras de solo incubadas por 4 e 12 semanas, sugerindo que as interações entre o Ni e as partículas do solo aumentam ao longo do tempo. A quantidade de Ni dessorvido aumentou com o aumento da força iônica, independentemente da profundidade de amostragem do solo. Finalmente, a histerese da reação de adsorção-dessorção de Ni foi claramente observada. O pH do solo, a força iônica da solução e o tempo de contato do Ni com o solo devem ser considerados critérios para a seleção de áreas para a disposição de resíduos contendo Ni e para compor estratégias de remediação para solos ácricos contaminados por Ni.

8.
Braz. arch. biol. technol ; 54(1): 207-220, Jan.-Feb. 2011. ilus, graf, tab
Artículo en Inglés | LILACS | ID: lil-576776

RESUMEN

The effects of pH and ionic strength (I) on Ni adsorption in variable charge soils were evaluated by laboratory batch experiments. Experimental results fitted the Langmuir model. Maximum adsorption (Ads max) ranged from 260-2818 mg kg-1 (topsoil) to 532-1541 mg kg-1 (subsoil). Nickel affinity (K L) was higher in the subsoil samples (0.022-0.236 L kg-1) than in topsoil (0.003-0.049 L kg-1). Adsorption envelopes showed sharp increase in Ni adsorption (20-90 percent) in the 4.0-6.0 pH range. Nickel adsorption was affected by I and specific adsorption predominated in the 3.0-5.0 pH range, while above pH 5.0, it was adsorbed by electrostatic mechanisms. Negative values of free energy variation (ΔG) and the separation factor K R<1 indicated that Ni adsorption reaction was favorable and occurred spontaneously, especially when pH increase. Chemical and mineralogical soil attributes should be considered as criteria for selecting the areas for disposal of residues containing Ni to minimize the impact on the environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...