Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Diagnostics (Basel) ; 13(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37296806

RESUMEN

BACKGROUND AND MOTIVATION: Lung computed tomography (CT) techniques are high-resolution and are well adopted in the intensive care unit (ICU) for COVID-19 disease control classification. Most artificial intelligence (AI) systems do not undergo generalization and are typically overfitted. Such trained AI systems are not practical for clinical settings and therefore do not give accurate results when executed on unseen data sets. We hypothesize that ensemble deep learning (EDL) is superior to deep transfer learning (TL) in both non-augmented and augmented frameworks. METHODOLOGY: The system consists of a cascade of quality control, ResNet-UNet-based hybrid deep learning for lung segmentation, and seven models using TL-based classification followed by five types of EDL's. To prove our hypothesis, five different kinds of data combinations (DC) were designed using a combination of two multicenter cohorts-Croatia (80 COVID) and Italy (72 COVID and 30 controls)-leading to 12,000 CT slices. As part of generalization, the system was tested on unseen data and statistically tested for reliability/stability. RESULTS: Using the K5 (80:20) cross-validation protocol on the balanced and augmented dataset, the five DC datasets improved TL mean accuracy by 3.32%, 6.56%, 12.96%, 47.1%, and 2.78%, respectively. The five EDL systems showed improvements in accuracy of 2.12%, 5.78%, 6.72%, 32.05%, and 2.40%, thus validating our hypothesis. All statistical tests proved positive for reliability and stability. CONCLUSION: EDL showed superior performance to TL systems for both (a) unbalanced and unaugmented and (b) balanced and augmented datasets for both (i) seen and (ii) unseen paradigms, validating both our hypotheses.

2.
Healthcare (Basel) ; 10(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36554017

RESUMEN

Motivation: The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price. Objective: Artificial Intelligence (AI) is already well-known for its superiority in various healthcare applications, including the segmentation of lesions in images, speech recognition, smartphone personal assistants, navigation, ride-sharing apps, and many more. Our study is based on two hypotheses: (i) AI offers more economic solutions compared to conventional methods; (ii) AI treatment offers stronger economics compared to AI diagnosis. This novel study aims to evaluate AI technology in the context of healthcare costs, namely in the areas of diagnosis and treatment, and then compare it to the traditional or non-AI-based approaches. Methodology: PRISMA was used to select the best 200 studies for AI in healthcare with a primary focus on cost reduction, especially towards diagnosis and treatment. We defined the diagnosis and treatment architectures, investigated their characteristics, and categorized the roles that AI plays in the diagnostic and therapeutic paradigms. We experimented with various combinations of different assumptions by integrating AI and then comparing it against conventional costs. Lastly, we dwell on three powerful future concepts of AI, namely, pruning, bias, explainability, and regulatory approvals of AI systems. Conclusions: The model shows tremendous cost savings using AI tools in diagnosis and treatment. The economics of AI can be improved by incorporating pruning, reduction in AI bias, explainability, and regulatory approvals.

3.
J Clin Med ; 11(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36431321

RESUMEN

A diabetic foot infection (DFI) is among the most serious, incurable, and costly to treat conditions. The presence of a DFI renders machine learning (ML) systems extremely nonlinear, posing difficulties in CVD/stroke risk stratification. In addition, there is a limited number of well-explained ML paradigms due to comorbidity, sample size limits, and weak scientific and clinical validation methodologies. Deep neural networks (DNN) are potent machines for learning that generalize nonlinear situations. The objective of this article is to propose a novel investigation of deep learning (DL) solutions for predicting CVD/stroke risk in DFI patients. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) search strategy was used for the selection of 207 studies. We hypothesize that a DFI is responsible for increased morbidity and mortality due to the worsening of atherosclerotic disease and affecting coronary artery disease (CAD). Since surrogate biomarkers for CAD, such as carotid artery disease, can be used for monitoring CVD, we can thus use a DL-based model, namely, Long Short-Term Memory (LSTM) and Recurrent Neural Networks (RNN) for CVD/stroke risk prediction in DFI patients, which combines covariates such as office and laboratory-based biomarkers, carotid ultrasound image phenotype (CUSIP) lesions, along with the DFI severity. We confirmed the viability of CVD/stroke risk stratification in the DFI patients. Strong designs were found in the research of the DL architectures for CVD/stroke risk stratification. Finally, we analyzed the AI bias and proposed strategies for the early diagnosis of CVD/stroke in DFI patients. Since DFI patients have an aggressive atherosclerotic disease, leading to prominent CVD/stroke risk, we, therefore, conclude that the DL paradigm is very effective for predicting the risk of CVD/stroke in DFI patients.

4.
J Cardiovasc Dev Dis ; 9(8)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36005433

RESUMEN

The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate.

5.
Diagnostics (Basel) ; 12(7)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35885449

RESUMEN

Background and Motivation: Parkinson's disease (PD) is one of the most serious, non-curable, and expensive to treat. Recently, machine learning (ML) has shown to be able to predict cardiovascular/stroke risk in PD patients. The presence of COVID-19 causes the ML systems to become severely non-linear and poses challenges in cardiovascular/stroke risk stratification. Further, due to comorbidity, sample size constraints, and poor scientific and clinical validation techniques, there have been no well-explained ML paradigms. Deep neural networks are powerful learning machines that generalize non-linear conditions. This study presents a novel investigation of deep learning (DL) solutions for CVD/stroke risk prediction in PD patients affected by the COVID-19 framework. Method: The PRISMA search strategy was used for the selection of 292 studies closely associated with the effect of PD on CVD risk in the COVID-19 framework. We study the hypothesis that PD in the presence of COVID-19 can cause more harm to the heart and brain than in non-COVID-19 conditions. COVID-19 lung damage severity can be used as a covariate during DL training model designs. We, therefore, propose a DL model for the estimation of, (i) COVID-19 lesions in computed tomography (CT) scans and (ii) combining the covariates of PD, COVID-19 lesions, office and laboratory arterial atherosclerotic image-based biomarkers, and medicine usage for the PD patients for the design of DL point-based models for CVD/stroke risk stratification. Results: We validated the feasibility of CVD/stroke risk stratification in PD patients in the presence of a COVID-19 environment and this was also verified. DL architectures like long short-term memory (LSTM), and recurrent neural network (RNN) were studied for CVD/stroke risk stratification showing powerful designs. Lastly, we examined the artificial intelligence bias and provided recommendations for early detection of CVD/stroke in PD patients in the presence of COVID-19. Conclusion: The DL is a very powerful tool for predicting CVD/stroke risk in PD patients affected by COVID-19.

6.
Diagnostics (Basel) ; 12(6)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35741292

RESUMEN

Background: The previous COVID-19 lung diagnosis system lacks both scientific validation and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study presents a cloud-based explainable AI, the "COVLIAS 2.0-cXAI" system using four kinds of class activation maps (CAM) models. Methodology: Our cohort consisted of ~6000 CT slices from two sources (Croatia, 80 COVID-19 patients and Italy, 15 control patients). COVLIAS 2.0-cXAI design consisted of three stages: (i) automated lung segmentation using hybrid deep learning ResNet-UNet model by automatic adjustment of Hounsfield units, hyperparameter optimization, and parallel and distributed training, (ii) classification using three kinds of DenseNet (DN) models (DN-121, DN-169, DN-201), and (iii) validation using four kinds of CAM visualization techniques: gradient-weighted class activation mapping (Grad-CAM), Grad-CAM++, score-weighted CAM (Score-CAM), and FasterScore-CAM. The COVLIAS 2.0-cXAI was validated by three trained senior radiologists for its stability and reliability. The Friedman test was also performed on the scores of the three radiologists. Results: The ResNet-UNet segmentation model resulted in dice similarity of 0.96, Jaccard index of 0.93, a correlation coefficient of 0.99, with a figure-of-merit of 95.99%, while the classifier accuracies for the three DN nets (DN-121, DN-169, and DN-201) were 98%, 98%, and 99% with a loss of ~0.003, ~0.0025, and ~0.002 using 50 epochs, respectively. The mean AUC for all three DN models was 0.99 (p < 0.0001). The COVLIAS 2.0-cXAI showed 80% scans for mean alignment index (MAI) between heatmaps and gold standard, a score of four out of five, establishing the system for clinical settings. Conclusions: The COVLIAS 2.0-cXAI successfully showed a cloud-based explainable AI system for lesion localization in lung CT scans.

7.
Comput Biol Med ; 146: 105571, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35751196

RESUMEN

BACKGROUND: COVLIAS 1.0: an automated lung segmentation was designed for COVID-19 diagnosis. It has issues related to storage space and speed. This study shows that COVLIAS 2.0 uses pruned AI (PAI) networks for improving both storage and speed, wiliest high performance on lung segmentation and lesion localization. METHOD: ology: The proposed study uses multicenter ∼9,000 CT slices from two different nations, namely, CroMed from Croatia (80 patients, experimental data), and NovMed from Italy (72 patients, validation data). We hypothesize that by using pruning and evolutionary optimization algorithms, the size of the AI models can be reduced significantly, ensuring optimal performance. Eight different pruning techniques (i) differential evolution (DE), (ii) genetic algorithm (GA), (iii) particle swarm optimization algorithm (PSO), and (iv) whale optimization algorithm (WO) in two deep learning frameworks (i) Fully connected network (FCN) and (ii) SegNet were designed. COVLIAS 2.0 was validated using "Unseen NovMed" and benchmarked against MedSeg. Statistical tests for stability and reliability were also conducted. RESULTS: Pruning algorithms (i) FCN-DE, (ii) FCN-GA, (iii) FCN-PSO, and (iv) FCN-WO showed improvement in storage by 92.4%, 95.3%, 98.7%, and 99.8% respectively when compared against solo FCN, and (v) SegNet-DE, (vi) SegNet-GA, (vii) SegNet-PSO, and (viii) SegNet-WO showed improvement by 97.1%, 97.9%, 98.8%, and 99.2% respectively when compared against solo SegNet. AUC > 0.94 (p < 0.0001) on CroMed and > 0.86 (p < 0.0001) on NovMed data set for all eight EA model. PAI <0.25 s per image. DenseNet-121-based Grad-CAM heatmaps showed validation on glass ground opacity lesions. CONCLUSIONS: Eight PAI networks that were successfully validated are five times faster, storage efficient, and could be used in clinical settings.


Asunto(s)
COVID-19 , Aprendizaje Profundo , COVID-19/diagnóstico por imagen , Prueba de COVID-19 , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/diagnóstico por imagen , Redes Neurales de la Computación , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X/métodos
8.
Diagnostics (Basel) ; 12(5)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35626389

RESUMEN

Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for low-income countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, low-cost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework.

9.
Diagnostics (Basel) ; 12(5)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35626438

RESUMEN

Background: COVID-19 is a disease with multiple variants, and is quickly spreading throughout the world. It is crucial to identify patients who are suspected of having COVID-19 early, because the vaccine is not readily available in certain parts of the world. Methodology: Lung computed tomography (CT) imaging can be used to diagnose COVID-19 as an alternative to the RT-PCR test in some cases. The occurrence of ground-glass opacities in the lung region is a characteristic of COVID-19 in chest CT scans, and these are daunting to locate and segment manually. The proposed study consists of a combination of solo deep learning (DL) and hybrid DL (HDL) models to tackle the lesion location and segmentation more quickly. One DL and four HDL models­namely, PSPNet, VGG-SegNet, ResNet-SegNet, VGG-UNet, and ResNet-UNet­were trained by an expert radiologist. The training scheme adopted a fivefold cross-validation strategy on a cohort of 3000 images selected from a set of 40 COVID-19-positive individuals. Results: The proposed variability study uses tracings from two trained radiologists as part of the validation. Five artificial intelligence (AI) models were benchmarked against MedSeg. The best AI model, ResNet-UNet, was superior to MedSeg by 9% and 15% for Dice and Jaccard, respectively, when compared against MD 1, and by 4% and 8%, respectively, when compared against MD 2. Statistical tests­namely, the Mann−Whitney test, paired t-test, and Wilcoxon test­demonstrated its stability and reliability, with p < 0.0001. The online system for each slice was <1 s. Conclusions: The AI models reliably located and segmented COVID-19 lesions in CT scans. The COVLIAS 1.0Lesion lesion locator passed the intervariability test.

10.
Diagnostics (Basel) ; 11(12)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34943603

RESUMEN

(1) Background: COVID-19 computed tomography (CT) lung segmentation is critical for COVID lung severity diagnosis. Earlier proposed approaches during 2020-2021 were semiautomated or automated but not accurate, user-friendly, and industry-standard benchmarked. The proposed study compared the COVID Lung Image Analysis System, COVLIAS 1.0 (GBTI, Inc., and AtheroPointTM, Roseville, CA, USA, referred to as COVLIAS), against MedSeg, a web-based Artificial Intelligence (AI) segmentation tool, where COVLIAS uses hybrid deep learning (HDL) models for CT lung segmentation. (2) Materials and Methods: The proposed study used 5000 ITALIAN COVID-19 positive CT lung images collected from 72 patients (experimental data) that confirmed the reverse transcription-polymerase chain reaction (RT-PCR) test. Two hybrid AI models from the COVLIAS system, namely, VGG-SegNet (HDL 1) and ResNet-SegNet (HDL 2), were used to segment the CT lungs. As part of the results, we compared both COVLIAS and MedSeg against two manual delineations (MD 1 and MD 2) using (i) Bland-Altman plots, (ii) Correlation coefficient (CC) plots, (iii) Receiver operating characteristic curve, and (iv) Figure of Merit and (v) visual overlays. A cohort of 500 CROATIA COVID-19 positive CT lung images (validation data) was used. A previously trained COVLIAS model was directly applied to the validation data (as part of Unseen-AI) to segment the CT lungs and compare them against MedSeg. (3) Result: For the experimental data, the four CCs between COVLIAS (HDL 1) vs. MD 1, COVLIAS (HDL 1) vs. MD 2, COVLIAS (HDL 2) vs. MD 1, and COVLIAS (HDL 2) vs. MD 2 were 0.96, 0.96, 0.96, and 0.96, respectively. The mean value of the COVLIAS system for the above four readings was 0.96. CC between MedSeg vs. MD 1 and MedSeg vs. MD 2 was 0.98 and 0.98, respectively. Both had a mean value of 0.98. On the validation data, the CC between COVLIAS (HDL 1) vs. MedSeg and COVLIAS (HDL 2) vs. MedSeg was 0.98 and 0.99, respectively. For the experimental data, the difference between the mean values for COVLIAS and MedSeg showed a difference of <2.5%, meeting the standard of equivalence. The average running times for COVLIAS and MedSeg on a single lung CT slice were ~4 s and ~10 s, respectively. (4) Conclusions: The performances of COVLIAS and MedSeg were similar. However, COVLIAS showed improved computing time over MedSeg.

11.
Front Biosci (Landmark Ed) ; 26(11): 1312-1339, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34856770

RESUMEN

Background: Atherosclerosis is the primary cause of the cardiovascular disease (CVD). Several risk factors lead to atherosclerosis, and altered nutrition is one among those. Nutrition has been ignored quite often in the process of CVD risk assessment. Altered nutrition along with carotid ultrasound imaging-driven atherosclerotic plaque features can help in understanding and banishing the problems associated with the late diagnosis of CVD. Artificial intelligence (AI) is another promisingly adopted technology for CVD risk assessment and management. Therefore, we hypothesize that the risk of atherosclerotic CVD can be accurately monitored using carotid ultrasound imaging, predicted using AI-based algorithms, and reduced with the help of proper nutrition. Layout: The review presents a pathophysiological link between nutrition and atherosclerosis by gaining a deep insight into the processes involved at each stage of plaque development. After targeting the causes and finding out results by low-cost, user-friendly, ultrasound-based arterial imaging, it is important to (i) stratify the risks and (ii) monitor them by measuring plaque burden and computing risk score as part of the preventive framework. Artificial intelligence (AI)-based strategies are used to provide efficient CVD risk assessments. Finally, the review presents the role of AI for CVD risk assessment during COVID-19. Conclusions: By studying the mechanism of low-density lipoprotein formation, saturated and trans fat, and other dietary components that lead to plaque formation, we demonstrate the use of CVD risk assessment due to nutrition and atherosclerosis disease formation during normal and COVID times. Further, nutrition if included, as a part of the associated risk factors can benefit from atherosclerotic disease progression and its management using AI-based CVD risk assessment.


Asunto(s)
Arterias/diagnóstico por imagen , Aterosclerosis/diagnóstico por imagen , COVID-19/fisiopatología , Enfermedades Cardiovasculares/diagnóstico por imagen , Estado Nutricional , Algoritmos , COVID-19/diagnóstico por imagen , COVID-19/virología , Humanos , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación
12.
Diagnostics (Basel) ; 11(11)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34829372

RESUMEN

Background: For COVID-19 lung severity, segmentation of lungs on computed tomography (CT) is the first crucial step. Current deep learning (DL)-based Artificial Intelligence (AI) models have a bias in the training stage of segmentation because only one set of ground truth (GT) annotations are evaluated. We propose a robust and stable inter-variability analysis of CT lung segmentation in COVID-19 to avoid the effect of bias. Methodology: The proposed inter-variability study consists of two GT tracers for lung segmentation on chest CT. Three AI models, PSP Net, VGG-SegNet, and ResNet-SegNet, were trained using GT annotations. We hypothesized that if AI models are trained on the GT tracings from multiple experience levels, and if the AI performance on the test data between these AI models is within the 5% range, one can consider such an AI model robust and unbiased. The K5 protocol (training to testing: 80%:20%) was adapted. Ten kinds of metrics were used for performance evaluation. Results: The database consisted of 5000 CT chest images from 72 COVID-19-infected patients. By computing the coefficient of correlations (CC) between the output of the two AI models trained corresponding to the two GT tracers, computing their differences in their CC, and repeating the process for all three AI-models, we show the differences as 0%, 0.51%, and 2.04% (all < 5%), thereby validating the hypothesis. The performance was comparable; however, it had the following order: ResNet-SegNet > PSP Net > VGG-SegNet. Conclusions: The AI models were clinically robust and stable during the inter-variability analysis on the CT lung segmentation on COVID-19 patients.

13.
Diagnostics (Basel) ; 11(8)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34441340

RESUMEN

BACKGROUND: COVID-19 lung segmentation using Computed Tomography (CT) scans is important for the diagnosis of lung severity. The process of automated lung segmentation is challenging due to (a) CT radiation dosage and (b) ground-glass opacities caused by COVID-19. The lung segmentation methodologies proposed in 2020 were semi- or automated but not reliable, accurate, and user-friendly. The proposed study presents a COVID Lung Image Analysis System (COVLIAS 1.0, AtheroPoint™, Roseville, CA, USA) consisting of hybrid deep learning (HDL) models for lung segmentation. METHODOLOGY: The COVLIAS 1.0 consists of three methods based on solo deep learning (SDL) or hybrid deep learning (HDL). SegNet is proposed in the SDL category while VGG-SegNet and ResNet-SegNet are designed under the HDL paradigm. The three proposed AI approaches were benchmarked against the National Institute of Health (NIH)-based conventional segmentation model using fuzzy-connectedness. A cross-validation protocol with a 40:60 ratio between training and testing was designed, with 10% validation data. The ground truth (GT) was manually traced by a radiologist trained personnel. For performance evaluation, nine different criteria were selected to perform the evaluation of SDL or HDL lung segmentation regions and lungs long axis against GT. RESULTS: Using the database of 5000 chest CT images (from 72 patients), COVLIAS 1.0 yielded AUC of ~0.96, ~0.97, ~0.98, and ~0.96 (p-value < 0.001), respectively within 5% range of GT area, for SegNet, VGG-SegNet, ResNet-SegNet, and NIH. The mean Figure of Merit using four models (left and right lung) was above 94%. On benchmarking against the National Institute of Health (NIH) segmentation method, the proposed model demonstrated a 58% and 44% improvement in ResNet-SegNet, 52% and 36% improvement in VGG-SegNet for lung area, and lung long axis, respectively. The PE statistics performance was in the following order: ResNet-SegNet > VGG-SegNet > NIH > SegNet. The HDL runs in <1 s on test data per image. CONCLUSIONS: The COVLIAS 1.0 system can be applied in real-time for radiology-based clinical settings.

14.
Urology ; 156: 154-162, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34171347

RESUMEN

OBJECTIVES: To evaluate the use of direct oral anticoagulants following radical cystectomy for venous thromboembolism prophylaxis. We compared the experience of those who received venous thromboembolism prophylaxis following a robot-assisted radical cystectomy with either a direct oral anticoagulant or enoxaparin. METHODS: Medical records of 66 patients who underwent robot-assisted radical cystectomy between July 2017 and May 2020 at a single academic institution were reviewed retrospectively. Patients received extended prophylaxis with either a direct oral anticoagulant or enoxaparin before or following surgical discharge. Venous thromboembolic events and complications resulting in emergency department visits and readmissions were reviewed over a 90-day postoperative period. RESULTS: A total of 4 venous thromboembolic events within 90 days of surgery were observed. Among patients taking enoxaparin, 5% (2/37) developed a deep vein thrombosis and 3% (1/37) developed a pulmonary embolism. Among patients taking direct oral anticoagulants, 3% (1/29) developed a deep vein thrombosis. Zero patients in the enoxaparin group and 3% (1/29) of patients in the direct oral anticoagulant group experienced bleeding that required an emergency department visit. CONCLUSION: Direct oral anticoagulants performed comparably to enoxaparin in this feasibility study following robot-assisted radical cystectomy in 66 patients. No significant differences in the number of venous thromboembolisms or bleeding complications were observed. These data encourage future studies and support the prospect of direct oral anticoagulants as a potentially suitable oral alternative to injectable low molecular weight heparins for venous thromboembolism prophylaxis following radical cystectomy.


Asunto(s)
Antitrombinas , Quimioprevención , Cistectomía/efectos adversos , Enoxaparina , Hemorragia , Procedimientos Quirúrgicos Robotizados/efectos adversos , Tromboembolia Venosa , Anticoagulantes/administración & dosificación , Anticoagulantes/efectos adversos , Antitrombinas/administración & dosificación , Antitrombinas/efectos adversos , Quimioprevención/efectos adversos , Quimioprevención/métodos , Cistectomía/métodos , Enoxaparina/administración & dosificación , Enoxaparina/efectos adversos , Femenino , Hemorragia/inducido químicamente , Hemorragia/prevención & control , Hemorragia/terapia , Humanos , Masculino , Persona de Mediana Edad , Evaluación de Procesos y Resultados en Atención de Salud , Estudios Retrospectivos , Ajuste de Riesgo/métodos , Procedimientos Quirúrgicos Robotizados/métodos , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/etiología , Tromboembolia Venosa/prevención & control
15.
Transl Androl Urol ; 10(2): 851-859, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33718086

RESUMEN

BACKGROUND: Postoperative opioid prescribing has been linked with persistent opioid use. Ureteroscopy (URS) is a common urologic procedure and a potential area to focus on opioid reduction. We aim to characterize international practice patterns of opioid prescribing post URS and what measures may decrease the need for opioid prescription. METHODS: We developed a survey directed to members of the Endourological Society. The survey queried the frequency of opioid prescribing post URS, challenges when opioids are not prescribed, and measures thought to reduce the need for opioids. RESULTS: We received 159 responses with the majority reported practicing urology for >20 years (37.1%), and performing 10-20 ureteroscopies/month (45.3%). Forty-one percent were from the United States (US) and Canada. Sixty-six percent completed a fellowship, 84% in endourology. Twenty-six percent prescribe opioids more than half the time and the majority do so less than 10% of the time (61.6%). Thirty-eight percent had no challenges when opioids were omitted. Measures felt to decrease the need for opioids were preoperative counseling, nonsteroidal anti-inflammatory drugs use, and use of adjunct medications. After adjusting for location and type of practice, endourology fellowship completion, years of practice, and number of ureteroscopies/month, we found that respondents from the US and Canada were more likely to prescribe opioids more than half the time post URS compared to respondents from the rest of the world [odds ratio (OR): 87.5, P<0.001, 95% confidence interval (CI): 17.3-443.5]. CONCLUSIONS: Despite proven feasibility of non-opioid pathway, nearly one-quarter of participants in our survey prescribe opioids >50% of the time post URS. Most important factors felt to reduce opioid prescription post URS were preoperative counseling, nonsteroidal anti-inflammatory drugs use. US and Canadian urologists were more likely to prescribe opioids >50% of the time post URS compared to the rest of the world. We believe best practice guidelines should be considered by the American and Canadian Urological Associations to address post URS opioid prescribing.

16.
Comput Biol Med ; 130: 104210, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33550068

RESUMEN

COVID-19 has infected 77.4 million people worldwide and has caused 1.7 million fatalities as of December 21, 2020. The primary cause of death due to COVID-19 is Acute Respiratory Distress Syndrome (ARDS). According to the World Health Organization (WHO), people who are at least 60 years old or have comorbidities that have primarily been targeted are at the highest risk from SARS-CoV-2. Medical imaging provides a non-invasive, touch-free, and relatively safer alternative tool for diagnosis during the current ongoing pandemic. Artificial intelligence (AI) scientists are developing several intelligent computer-aided diagnosis (CAD) tools in multiple imaging modalities, i.e., lung computed tomography (CT), chest X-rays, and lung ultrasounds. These AI tools assist the pulmonary and critical care clinicians through (a) faster detection of the presence of a virus, (b) classifying pneumonia types, and (c) measuring the severity of viral damage in COVID-19-infected patients. Thus, it is of the utmost importance to fully understand the requirements of for a fast and successful, and timely lung scans analysis. This narrative review first presents the pathological layout of the lungs in the COVID-19 scenario, followed by understanding and then explains the comorbid statistical distributions in the ARDS framework. The novelty of this review is the approach to classifying the AI models as per the by school of thought (SoTs), exhibiting based on segregation of techniques and their characteristics. The study also discusses the identification of AI models and its extension from non-ARDS lungs (pre-COVID-19) to ARDS lungs (post-COVID-19). Furthermore, it also presents AI workflow considerations of for medical imaging modalities in the COVID-19 framework. Finally, clinical AI design considerations will be discussed. We conclude that the design of the current existing AI models can be improved by considering comorbidity as an independent factor. Furthermore, ARDS post-processing clinical systems must involve include (i) the clinical validation and verification of AI-models, (ii) reliability and stability criteria, and (iii) easily adaptable, and (iv) generalization assessments of AI systems for their use in pulmonary, critical care, and radiological settings.


Asunto(s)
Inteligencia Artificial , COVID-19/diagnóstico por imagen , Pulmón/diagnóstico por imagen , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X , Humanos
17.
Comput Biol Med ; 124: 103960, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32919186

RESUMEN

Artificial intelligence (AI) has penetrated the field of medicine, particularly the field of radiology. Since its emergence, the highly virulent coronavirus disease 2019 (COVID-19) has infected over 10 million people, leading to over 500,000 deaths as of July 1st, 2020. Since the outbreak began, almost 28,000 articles about COVID-19 have been published (https://pubmed.ncbi.nlm.nih.gov); however, few have explored the role of imaging and artificial intelligence in COVID-19 patients-specifically, those with comorbidities. This paper begins by presenting the four pathways that can lead to heart and brain injuries following a COVID-19 infection. Our survey also offers insights into the role that imaging can play in the treatment of comorbid patients, based on probabilities derived from COVID-19 symptom statistics. Such symptoms include myocardial injury, hypoxia, plaque rupture, arrhythmias, venous thromboembolism, coronary thrombosis, encephalitis, ischemia, inflammation, and lung injury. At its core, this study considers the role of image-based AI, which can be used to characterize the tissues of a COVID-19 patient and classify the severity of their infection. Image-based AI is more important than ever as the pandemic surges and countries worldwide grapple with limited medical resources for detection and diagnosis.


Asunto(s)
Betacoronavirus , Lesiones Encefálicas/epidemiología , Infecciones por Coronavirus/epidemiología , Lesiones Cardíacas/epidemiología , Neumonía Viral/epidemiología , Inteligencia Artificial , Betacoronavirus/patogenicidad , Betacoronavirus/fisiología , Lesiones Encefálicas/clasificación , Lesiones Encefálicas/diagnóstico por imagen , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/métodos , Comorbilidad , Biología Computacional , Infecciones por Coronavirus/clasificación , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/diagnóstico por imagen , Aprendizaje Profundo , Lesiones Cardíacas/clasificación , Lesiones Cardíacas/diagnóstico por imagen , Humanos , Aprendizaje Automático , Pandemias/clasificación , Neumonía Viral/clasificación , Neumonía Viral/diagnóstico por imagen , Factores de Riesgo , SARS-CoV-2 , Índice de Severidad de la Enfermedad
18.
J Endourol ; 32(11): 1044-1049, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30244594

RESUMEN

PURPOSE: Efforts have begun to implement nonopioid protocols for outpatient urologic surgery. In this study, we report a retrospective review of the feasibility of implementing a nonopioid protocol to manage postoperative pain after ureteroscopy with stent placement. METHODS: Between November 2016 and March 2018, 210 patients underwent ureteroscopy with stent placement by a single surgeon at an academic medical center. A treatment algorithm was used to determine the eligibility and appropriately select patients for the nonopioid pathway. Frequency of postoperative events was reviewed and included visits to the emergency department (ED), telephone calls to the clinic, and requests for prescription refills. RESULTS: Two hundred six of 210 patients met the inclusion criteria. Of these 206 patients, 151 were discharged without opioid medications (73%) and 55 received opioids (27%). Both patients receiving opioids and nonopioids had a low number of postoperative visits to the ED for genitourinary-related concerns (7 patients receiving opioids [13%] and 15 patients without opioids [10%]). Telephone calls made to the urology clinic for concerning symptoms were made by 25 patients receiving opioids (45%) and 32 patients without opioids (21%). The number of pain medication refill requests was low for both groups: 13 patients receiving opioids (24%) and 11 patients without opioids (7%). CONCLUSIONS: Our experience using a nonopioid pathway after ureteroscopy and stent placement reveals that approximately three-fourths of patients can be discharged without opioids. Patients had a low number of visits to the ED for postoperative genitourinary symptoms, a low number of telephone calls to the clinic, and requested few prescription pain medication refills regardless of whether or not they received opioids on discharge.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Dolor Postoperatorio/prevención & control , Alta del Paciente , Pautas de la Práctica en Medicina , Centros Médicos Académicos , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Stents , Ureteroscopía , Vermont
19.
Case Rep Urol ; 2013: 498507, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24392239

RESUMEN

Nephroptosis is a controversial phenomenon well described in the literature. In this case report, we present a patient whose right kidney had "wandered" from its normal anatomic position in the retroperitoneum anteriorly and was in a fixed position anterior to the liver secondary to hydronephrosis. As opposed to the suspected mechanism of nephroptosis, we offer a hydraulic theory as to the origin of the energy required to cause this translocation. The work required to move the patient's kidney was generated by her cardiac output.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...