Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(26): e202403910, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38635375

RESUMEN

The dynamic nature of calamitic liquid crystals is exploited to perform isothermal phase transitions driven by dynamic covalent chemistry. For this purpose, nematic (N) arrays based on aldehyde 1 were treated with different amines (A-E) in an on-surface process, which resulted in different isothermal phase transitions. These phase transformations were caused by in situ imination reactions and are dependent on the nature of the added amine. Transitions from the N to crystal (1A, 1E), isotropic (1B), and smectic (Sm) (1C, 1D) phases were achieved, while the resulting materials feature thermotropic liquid crystal behavior. A sequential transformation from the N 1 to the Sm 1C and then to the N 1B was achieved by coupling an imination to a transimination processes and adjusting the temperature. All of these processes were well characterized by microscopic, spectroscopic, and X-ray techniques, unlocking not only the constitutional but also the structural aspects of the phase transitions. This work provides new insights into designing constitutionally and structurally adaptable liquid crystal systems, paving the way toward the conception of programable evolutive pathways and adaptive materials.

2.
Angew Chem Int Ed Engl ; 62(46): e202312223, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37750233

RESUMEN

We report on a dendronized bis-urea macrocycle 1 self-assembling via a cooperative mechanism into two-dimensional (2D) nanosheets formed solely by alternated urea-urea hydrogen bonding interactions. The pure macrocycle self-assembles in bulk into one-dimensional liquid-crystalline columnar phases. In contrast, its self-assembly mode drastically changes in CHCl3 or tetrachloroethane, leading to 2D hydrogen-bonded networks. Theoretical calculations, complemented by previously reported crystalline structures, indicate that the 2D assembly is formed by a brick-like hydrogen bonding pattern between bis-urea macrocycles. This assembly is promoted by the swelling of the trisdodecyloxyphenyl groups upon solvation, which frustrates, due to steric effects, the formation of the thermodynamically more stable columnar macrocycle stacks. This work proposes a new design strategy to access 2D supramolecular polymers by means of a single non-covalent interaction motif, which is of great interest for materials development.

3.
J Am Chem Soc ; 145(16): 8882-8895, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37053499

RESUMEN

Solute-solvent interactions play a critical role in multiple fields, including biology, materials science, and (physical) organic, polymer, and supramolecular chemistry. Within the growing field of supramolecular polymer science, these interactions have been recognized as an important driving force for (entropically driven) intermolecular association, particularly in aqueous media. However, to date, solute-solvent effects remain poorly understood in the context of complex self-assembly energy landscapes and pathway complexity. Herein, we unravel the role of solute-solvent interactions in controlling chain conformation effects, allowing energy landscape modulation and pathway selection in aqueous supramolecular polymerization. To this end, we have designed a series of oligo(phenylene ethynylene) (OPE)-based bolaamphiphilic Pt(II) complexes OPE2-4 bearing solubilizing triethylene glycol (TEG) chains of equal length on both molecule ends, but a different size of the hydrophobic aromatic scaffold. Strikingly, detailed self-assembly studies in aqueous media disclose a different tendency of the TEG chains to fold back and enwrap the hydrophobic molecular component depending on both the size of the core and the volume fraction of the co-solvent (THF). The relatively small hydrophobic component of OPE2 can be readily shielded by the TEG chains, leading to only one aggregation pathway. In contrast, the decreased capability of the TEG chains to effectively shield larger hydrophobic cores (OPE3 and OPE4) enables different types of solvent quality-dependent conformations (extended, partly back-folded and back-folded), which in turn induce various controllable aggregation pathways with distinct morphologies and mechanisms. Our results shed light on previously underappreciated solvent-dependent chain conformation effects and their role in governing pathway complexity in aqueous media.

4.
Angew Chem Int Ed Engl ; 62(17): e202218555, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36828774

RESUMEN

After more than three decades of extensive investigations on supramolecular polymers, strategies for self-limiting growth still remain challenging. Herein, we exploit a new V-shaped monomer design to achieve anticooperatively formed oligomers with superior robustness and high luminescence. In toluene, the monomer-oligomer equilibrium is shifted to the monomer side, enabling the elucidation of the molecular packing modes and the resulting (weak) anticooperativity. Steric effects associated with an antiparallel staircase organization of the dyes are proposed to outcompete aromatic and unconventional B-F⋅⋅⋅H-N/C interactions, restricting the growth at the stage of oligomers. In methylcyclohexane (MCH), the packing modes and the anticooperativity are preserved; however, pronounced solvophobic and chain-enwrapping effects lead to thermally ultrastable oligomers. Our results shed light on understanding anticooperative effects and restricted growth in self-assembly.

5.
Nat Commun ; 14(1): 1084, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841784

RESUMEN

Crowding effects are crucial to maintaining functionality in biological systems, but little is known about their role in analogous artificial counterparts. Within the growing field of supramolecular polymer science, crowding effects have hitherto remained underappreciated. Herein, we show that crowding effects exhibit strong and distinct control over the kinetics, accessible pathways and final outcomes of supramolecular polymerisation processes. In the presence of a pre-formed supramolecular polymer as crowding agent, a model supramolecular polymer dramatically changes its self-assembly behaviour and undergoes a morphological transformation from bundled fibres into flower-like hierarchical assemblies, despite no co-assembly taking place. Notably, this new pathway can only be accessed in crowded environments and when the crowding agent exhibits a one-dimensional morphology. These results allow accessing diverse morphologies and properties in supramolecular polymers and pave the way towards a better understanding of high-precision self-assembly in nature.

6.
Angew Chem Int Ed Engl ; 61(47): e202213345, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36178740

RESUMEN

Hydrogen-bonded squaramide (SQ) supramolecular polymers exhibit uncommon thermoreversible polymorph transitions between particle- and fiber-like nanostructures. SQs 1-3, with different steric bulk, self-assemble in solution into particles (AggI) upon cooling to 298 K, and SQs 1 and 2, with only one dendronic group, show a reversible transformation into fibers (AggII) by further decreasing the temperature to 288 K. Nano-DSC and UV/Vis studies on SQ 1 reveal a concentration-dependent transition temperature and ΔH for the AggI-to-AggII conversion, while the kinetic studies on SQ 2 indicate the on-pathway nature of the polymorph transition. Spectroscopic and theoretical studies reveal that these transitions are triggered by the molecular reorganization of the SQ units changing from slipped to head-to-tail hydrogen bonding patterns. This work unveils the thermodynamic and kinetic aspects of reversible polymorph transitions that are of interest to develop stimuli-responsive systems.


Asunto(s)
Hidrógeno , Polímeros , Enlace de Hidrógeno , Polímeros/química , Cinética
7.
Angew Chem Int Ed Engl ; 61(17): e202200390, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35112463

RESUMEN

Herein, we present a strategy to enable a maintained emissive behavior in the self-assembled state by enforcing an anti-cooperative self-assembly involving weak intermolecular dye interactions. To achieve this goal, we designed a conformationally flexible monomer unit 1 with a central 1,3-substituted (diphenyl)urea hydrogen bonding synthon that is tethered to two BODIPY dyes featuring sterically bulky trialkoxybenzene substituents at the meso-position. The competition between attractive forces (H-bonding and aromatic interactions) and destabilizing effects (steric and competing conformational effects) limits the assembly, halting the supramolecular growth at the stage of small oligomers. Given the presence of weak dye-dye interactions, the emission properties of molecularly dissolved 1 are negligibly affected upon aggregation. Our findings contribute to broadening the scope of emissive supramolecular assemblies and controlled supramolecular polymerization.


Asunto(s)
Enlace de Hidrógeno , Conformación Molecular , Polimerizacion
8.
Adv Mater ; 34(23): e2109063, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35034382

RESUMEN

Liquid crystals have been intensively studied as functional materials. Recently, integration of various disciplines has led to new directions in the design of functional liquid-crystalline materials in the fields of energy, water, photonics, actuation, sensing, and biotechnology. Here, recent advances in functional liquid crystals based on polymers, supramolecular complexes, gels, colloids, and inorganic-based hybrids are reviewed, from design strategies to functionalization of these materials and interfaces. New insights into liquid crystals provided by significant progress in advanced measurements and computational simulations, which enhance new design and functionalization of liquid-crystalline materials, are also discussed.

9.
Dalton Trans ; 50(27): 9367-9371, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34198315

RESUMEN

In the presence of Ag(i), the monoanion of cyano-N-squaraine (I) generates an intense fluorescence turn-on response. Experimental evidence and DFT calculations reveal a sequence of deprotonation-coordination events in which the Ag(i) ions play a dual role as a Lewis acid and coordinating metal. The observed effect is highly selective for Ag(i) compared to other metals.

10.
Chemistry ; 27(57): 14282-14286, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34323342

RESUMEN

We report the liquid-crystalline (LC) and luminescent properties of a series of N-annulated perylenes (1-4) in whose molecular structures amide and ester groups alternate. We found that the LC properties of these compounds not only depend on the number of hydrogen-bonding units, but also on the relative position of the amide linkers in the molecule. The absence of amide groups in compound 1 leads to no LC properties, whereas four amide groups induce the formation of a wide temperature range columnar hexagonal phase in compound 4. Remarkably, compound 3, with two amide groups in the inner part of the structure, stabilizes the columnar LC phases better than its structural isomer 2, with the amide groups in the outer part of the molecule. Similarly, we found that only compounds 1 and 2, which have no hydrogen bonding units in the inner part of the molecule, exhibit luminescence vapochromism upon exposure to organic solvent vapors.

11.
Small ; 17(7): e2006133, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33448095

RESUMEN

The rising interest on pathway complexity in supramolecular polymerization has prompted the finding of novel monomer designs able to stabilize kinetically trapped species and generate supramolecular polymorphs. In the present work, the exploitation of the Z/E (geometrical) isomerism of squaramide (SQ) units to produce various self-assembled isoforms and complex supramolecular polymerization pathways in methylcyclohexane/CHCl3 mixtures is reported for the first time. This is achieved by using a new bissquaramidic macrocycle (MSq) that self-assembles into two markedly different thermodynamic aggregates, AggA (discrete cyclic structures) and AggB (fibrillar structures), depending on the solvent composition and concentration. Remarkably, UV-vis, 1 H NMR, and FT-IR experiments together with quantum-chemical calculations indicate that these two distinct aggregates are formed via two different hydrogen bonding patterns (side-to-side in AggA and head-to-tail in AggB) due to different conformations in the SQ units (Z,E in AggA and Z,Z in AggB). The ability of MSq to supramolecularly polymerize into two distinct aggregates is utilized to induce the kinetic-to-thermodynamic transformation from AggA to AggB, which occurs via an on-pathway mechanism. It is believed that this system provides new insights for the design of potential supramolecular polymorphic materials by using squaramide units.


Asunto(s)
Isomerismo , Enlace de Hidrógeno , Polimerizacion , Quinina/análogos & derivados , Espectroscopía Infrarroja por Transformada de Fourier
12.
Chem Sci ; 13(1): 81-89, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35059154

RESUMEN

Anti-cooperative supramolecular polymerization by attenuated growth exhibited by self-assembling units of two electron-donor benzo[1,2-b:4,5-b']dithiophene (BDT) derivatives (compounds 1a and 1b) and the electron-acceptor 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) (compound 2) is reported. Despite the apparent cooperative mechanism of 1 and 2, AFM imaging and SAXS measurements reveal the formation of small aggregates that suggest the operation of an anti-cooperative mechanism strongly conditioned by an attenuated growth. In this mechanism, the formation of the nuclei is favoured over the subsequent addition of monomeric units to the aggregate, which finally results in short aggregates. Theoretical calculations show that both the BDT and BODIPY motifs, after forming the initial dimeric nuclei, experience a strong distortion of the central aromatic backbone upon growth, which makes the addition of successive monomeric units unfavourable and impedes the formation of long fibrillar structures. Despite the anti-cooperativity observed in the supramolecular polymerization of 1 and 2, the combination of both self-assembling units results in the formation of small co-assembled aggregates with a similar supramolecular polymerization behaviour to that observed for the separate components.

13.
Org Biomol Chem ; 18(5): 888-894, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31913400

RESUMEN

Squaramides are versatile compounds with a great capacity to interact via non-covalent interactions and therefore of interest for the development of supramolecular systems and functional materials. In the present work, a new series of aryl-squaramide amphiphiles (1-5) were prepared to form supramolecular polymers in water. Interestingly, only compounds 1 and 2 that contain electron-deficient aryl groups are capable of forming hydrogels (∼10-2 M) upon treatment with a base (NaOH or PBS). The aggregation behaviour of 1 and 2 was studied by static light scattering, UV-Vis, 1H NMR, FT-IR, and atomic force microscopy, and it was found that these compounds aggregate forming well-defined 1D nanofibers below the critical gelation concentration (<10-3 M). Moreover, the combination of these experiments with 1D and 2D NMR studies and theoretical calculations revealed that 1 and 2 self-assemble via an unprecedented interaction motif showing dipolar π-π interactions between the squaramide rings and the 4-nitrophenyl or 3,5-bis(trifluoromethyl)phenyl rings of 1 and 2, respectively. Such kinds of assemblies are stabilized by the compensation of the dipole moments of the stacked molecules. This interaction mode contrasts with those typically driving squaramide-based assemblies based on either hydrogen bonds or antiparallel stacking. We believe that this interaction motif is of interest for the design and development of new squaramide nanomaterials with free hydrogen bonding groups, which might be useful in drug delivery applications.

14.
Biomacromolecules ; 21(2): 966-973, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31880918

RESUMEN

We report on the bioinspired growth of gold nanoparticles (GNPs) in biocompatible hydrogels to develop plasmonic hybrid materials. The new hydrogel (CS-Sq) is prepared from chitosan and diethylsquarate and is formed via noncovalent interactions rising between the in situ formed ionic squaric acid derivatives and chitosan. Interestingly, when the hydrogel is prepared in the presence of HAuCl4, GNPs with controlled sizes between 15 and 50 nm are obtained, which are homogeneously distributed within the plasmonic hydrogels (GNPs-CS-Sq). We found that the supramolecular nature and the composition of the CS-Sq hydrogels are key for the growth process of GNPs where the squaric derivatives act as reducing agents and the chitosan hydrogel network provides nucleation points and supports the GNPs. Accordingly, the hydrogel acts as a bioinspired reactor and permits to gain certain control on the size of GNPs by adjusting the concentration of chitosan and HAuCl4. Besides the intrinsic and tunable plasmonic properties of the GNPs-CS-Sq hydrogels, it was found that the gels could be useful as heterogeneous catalysts for organic reactions. Furthermore, cell viability studies indicate that the new hydrogels exhibit suitable biocompatibility. Thus, the proposed method for obtaining GNPs-CS-Sq hydrogels has the potential for the development of a wide variety of other hybrid chitosan materials useful for catalysis, biosensing, cell culture, tissue engineering, and drug delivery applications.


Asunto(s)
Materiales Biocompatibles/síntesis química , Quitosano/síntesis química , Desarrollo de Medicamentos/métodos , Oro/química , Hidrogeles/síntesis química , Nanopartículas del Metal/química , Materiales Biocompatibles/administración & dosificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Quitosano/administración & dosificación , Relación Dosis-Respuesta a Droga , Oro/administración & dosificación , Células HEK293 , Humanos , Hidrogeles/administración & dosificación , Nanopartículas del Metal/administración & dosificación
15.
ACS Omega ; 4(12): 14868-14874, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31552326

RESUMEN

The functionalization of interfaces has become very important for the protection or modification of metal (metal oxides) surfaces. The functionalization of aluminum is particularly interesting because of its relevance in fabricating components for electronic devices. In this work, the utilization of squaramic acids for the functionalization of aluminum substrates is reported for the first time. The physicochemical properties of the interfaces rendered by n-alkyl squaramic acids on aluminum metal substrates coated with pseudoboehmite [Al(O)x(OH)y] layers are characterized by contact angle, grazing-angle Fourier-transform infrared spectroscopy, atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and matrix-assisted laser desorption ionization time-of-flight. Moreover, we could confirm the squaramic functionalization of the substrates by diffuse reflectance UV-vis spectroscopy, which cannot be used for the characterization of UV-vis-inactive substrates such as carboxylates and phosphonates, commonly used for coating metallic surfaces. Remarkably, the results of sorption experiments indicate that long-chain alkyl squaramic acid desorbs from activated-aluminum substrates at a reduced rate compared to palmitic acid, a carboxylic acid frequently used for the functionalization of metal oxide surfaces. Theoretical calculations indicate that the improved anchoring properties of squaramic acids over carboxylates are probably due to the formation of additional hydrogen bonding interactions on the interface. Accordingly, we propose N-alkyl squaramic acids as new moieties for efficient functionalization of metal oxides.

16.
Chem Sci ; 10(40): 9358-9366, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-32110300

RESUMEN

Self-assembly of amphiphilic dyes and π-systems are more difficult to understand and to control in water compared to organic solvents due to the hydrophobic effect. Herein, we elucidate in detail the self-assembly of a series of archetype bolaamphiphiles bearing a naphthalene bisimide (NBI) π-core with appended oligoethylene glycol (OEG) dendrons of different size. By utilizing temperature-dependent UV-vis spectroscopy and isothermal titration calorimetry (ITC), we have dissected the enthalpic and entropic parameters pertaining to the molecules' self-assembly. All investigated compounds show an enthalpically disfavored aggregation process leading to aggregate growth and eventually precipitation at elevated temperature, which is attributed to the dehydration of oligoethylene glycol units and their concomitant conformational changes. Back-folded conformation of the side chains plays a major role, as revealed by molecular dynamics (MD) and two dimensional NMR (2D NMR) studies, in directing the association. The sterical effect imparted by the jacketing of monomers and dimers also changes the aggregation mechanism from isodesmic to weakly anti-cooperative.

17.
Nanoscale Horiz ; 4(1): 169-174, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32254152

RESUMEN

Electrospinning is a well-established technique for the preparation of nanofibres from polymer solution or melt, however it is rarely applied for small molecules. Here we report a unique example of a liquid-crystalline (LC) diketopyrrolopyrrole (DPP) dye that was successfully used for electrospinning. Micrometric fibres with anisotropic alignment of DPP dye were produced by this process as shown by polarized optical microscopy and selected area electron diffraction. This newly designed DPP dye self-assembles in solution by hydrogen bonding and π-π-interactions and forms columnar LC phases in the bulk. X-ray scattering and polarized FT-IR studies in the LC state revealed a hierarchical arrangement of DPP molecules into columnar structures. The successful preparation of anisotropic microfibers by electrospinning is attributed to the hydrogen bond-directed supramolecular polymerization of the new DPP dye in solution and its LC properties.

18.
Chem Sci ; 9(34): 6904-6911, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30210765

RESUMEN

A new twelvefold methoxy-triethyleneglycol-jacketed tetraphenoxy-perylene bisimide (MEG-PBI) amphiphile was synthesized that self-assembles into two types of supramolecular aggregates in water: red-coloured aggregates of low order and with weak exciton coupling among the PBIs and blue-coloured strongly coupled J-aggregates consisting of a highly ordered hydrogen-bonded triple helix of PBIs. At room temperature this PBI is miscible with water at any proportions which enables the development of robust dye aggregates in solution, in hydrogel states and in lyotropic liquid crystalline states. In the presence of 60-95 wt% water, self-standing coloured hydrogels exhibit colour changes from red to blue accompanied by a fluorescence light-up in the far-red region upon heating in the range of 30-50 °C. This phenomenon is triggered by an entropically driven temperature-induced hydrogen-bond-directed slipped stacking arrangement of the MEG-PBI chromophores within structurally well-defined J-aggregates. This versatile aqua material is the first example of a stable PBI J-aggregate in water. We anticipate that this study will open a new avenue for the development of biocompatible functional materials based on self-assembled dyes and inspire the construction of other hydrogen-bonded supramolecular materials in the highly competitive solvent water.

19.
Nat Commun ; 9(1): 2646, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29980743

RESUMEN

Many discoid dyes self-assemble into columnar liquid-crystalline (LC) phases with packing arrangements that are undesired for photonic applications due to H-type exciton coupling. Here, we report a series of crystalline and LC perylene bisimides (PBIs) self-assembling into single or multi-stranded (two, three, and four strands) aggregates with predominant J-type exciton coupling. These differences in the supramolecular packing and optical properties are achieved by molecular design variations of tetra-bay phenoxy-dendronized PBIs with two N-H groups at the imide positions. The self-assembly is driven by hydrogen bonding, slipped π-π stacking, nanosegregation, and steric requirements of the peripheral building blocks. We could determine the impact of the packing motifs on the spectroscopic properties and demonstrate different J- and H-type coupling contributions between the chromophores. Our findings on structure-property relationships and strong J-couplings in bulk LC materials open a new avenue in the molecular engineering of PBI J-aggregates with prospective applications in photonics.

20.
Adv Sci (Weinh) ; 5(1): 1700405, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29375969

RESUMEN

Supply of safe fresh water is currently one of the most important global issues. Membranes technologies are essential to treat water efficiently with low costs and energy consumption. Here, the development of self-organized nanostructured water treatment membranes based on ionic liquid crystals composed of ammonium, imidazolium, and pyridinium moieties is reported. Membranes with preserved 1D or 3D self-organized sub-nanopores are obtained by photopolymerization of ionic columnar or bicontinuous cubic liquid crystals. These membranes show salt rejection ability, ion selectivity, and excellent water permeability. The relationships between the structures and the transport properties of water molecules and ionic solutes in the sub-nanopores in the membranes are examined by molecular dynamics simulations. The results suggest that the volume of vacant space in the nanochannel greatly affects the water and ion permeability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...