Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Tissue Res ; 397(2): 125-146, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878176

RESUMEN

In this study, the complex organization of the AnG in the giant freshwater prawn Macrobrachium rosenbergii was revealed using various techniques, including conventional histology, histochemistry, scanning electron microscopy, and X-ray tomography. The results showed the diversity of cells in the AnG and the detailed organization of the labyrinth's tubule into four radiated areas from the central to peripheral zones. The study also demonstrated the expression of some vertebrate kidney-associated homolog genes, aquaporin (AQP), solute carrier family 22 (SLC-22), nephrin, and uromodulin, in the AnG by qPCR. The result of in situ hybridization further showed the localization of SLC-22 and AQP transcript in the bladder and labyrinth's epithelium, specifically in regions 2, 3, and 4. Additionally, the study revealed neuropeptide expressions in the AnG by qPCR and in situ hybridization, i.e., crustacean hyperglycemic hormone (CHH) and molt inhibiting hormone (MIH), implying that the AnG may have a role in hormone production. Moreover, male and female prawns exhibited different levels of AQP, SLC-22, nephrin, and CHH expressions during the premolt and intermolt stages, suggesting a crucial role relevant to the molting stages. In conclusion, this study clarified the complex structure of the AnG in M. rosenbergii and demonstrated for the first time the expression of vertebrate kidney-associated genes and the possible endocrine role of the AnG. Further investigation is needed to clarify the role of these genes, particularly during ecdysis. The implications of these findings could significantly advance our understanding of the AnG in decapod crustaceans.


Asunto(s)
Palaemonidae , Animales , Palaemonidae/metabolismo , Palaemonidae/genética , Masculino , Femenino , Agua Dulce , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/genética , Acuaporinas/metabolismo , Acuaporinas/genética
2.
ACS Chem Neurosci ; 15(11): 2182-2197, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38726817

RESUMEN

Aggregative α-synuclein and incurring oxidative stress are pivotal cascading events, leading to dopaminergic (DAergic) neuronal loss and contributing to clinical manifestations of Parkinson's disease (PD). Our previous study demonstrated that 2-butoxytetrahydrofuran (2-BTHF), isolated from Holothuria scabra (H. scabra), could inhibit amyloid-ß aggregation and its ensuing toxicity, which leads to Alzheimer's disease. In the present study, we found that 2-BTHF also attenuated the aggregative and oxidative activities of α-synuclein and lessened its toxicity in a transgenic Caenorhabditis elegans (C. elegans) PD model. Such worms treated with 100 µM of 2-BTHF showed substantial reductions in α-synuclein accumulation and DAergic neurodegeneration. Mechanistically, 2-BTHF, at this concentration, significantly decreased aggregation of monomeric α-synuclein and restored locomotion and dopamine-dependent behaviors. Molecular docking exhibited potential bindings of 2-BTHF to HSF-1 and DAF-16 transcription factors. Additionally, 2-BTHF significantly increased the mRNA transcripts of genes encoding proteins involved in proteostasis, including the molecular chaperones hsp-16.2 and hsp-16.49, the ubiquitination/SUMOylation-related ubc-9 gene, and the autophagy-related genes atg-7 and lgg-1. Transcriptomic profiling revealed an additional mechanism of 2-BTHF in α-synuclein-expressing worms, which showed upregulation of PPAR signaling cascades that mediated fatty acid metabolism. 2-BTHF significantly restored lipid deposition, upregulated the fat-7 gene, and enhanced gcs-1-mediated glutathione synthesis in the C. elegans PD model. Taken together, this study demonstrated that 2-BTHF could abrogate aggregative and oxidative properties of α-synuclein and attenuate its toxicity, thus providing a possible therapeutic application for the treatment of α-synuclein-induced PD.


Asunto(s)
Caenorhabditis elegans , Furanos , Holothuria , Estrés Oxidativo , alfa-Sinucleína , Animales , Humanos , alfa-Sinucleína/metabolismo , Animales Modificados Genéticamente , Caenorhabditis elegans/efectos de los fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Furanos/farmacología , Simulación del Acoplamiento Molecular , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico
3.
Cell Tissue Res ; 397(1): 13-36, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38592496

RESUMEN

Neuropeptide F is a key hormone that controls feeding in invertebrates, including decapod crustaceans. We investigated the differential expression of Macrobrachium rosenbergii neuropeptide F (MrNPF) in the digestive organs of female prawns, M. rosenbergii, during the ovarian cycle. By using RT-qPCR, the expression of MrNPF mRNA in the esophagus (ESO), cardia (CD), and pylorus (PY) of the foregut (FG) gradually increased from stage II and peaked at stage III. In the midgut (MG), hindgut (HG), and hepatopancreas (HP), MrNPF mRNA increased from stage I, reaching a maximal level at stage II, and declined by about half at stages III and IV (P < 0.05). In the ESO, CD, and PY, strong MrNPF-immunoreactivities were seen in the epithelium, muscle, and lamina propria. Intense MrNPF-ir was found in the MG cells and the muscular layer. In the HG, MrNPF-ir was detected in the epithelium of the villi and gland regions, while MrNPF-ir was also more intense in the F-, R-, and B-cells in the HP. However, we found little colocalization between the MrNPF and PGP9.5/ChAT in digestive tissues, implying that most of the positive cells might not be neurons but could be digestive tract-associated endocrine cells that produce and secrete MrNPF to control digestive organ functions in feeding and utilizing feed. Taken together, our first findings indicated that MrNPF was differentially expressed in digestive organs in correlation with the ovarian cycle, suggesting an important link between MrNPF, the physiology of various digestive organs in feeding, and possibly ovarian maturation in female M. rosenbergii.


Asunto(s)
Neuropéptidos , Ovario , Palaemonidae , Animales , Femenino , Palaemonidae/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/genética , Ovario/metabolismo , Sistema Digestivo/metabolismo , Agua Dulce , ARN Mensajero/metabolismo , ARN Mensajero/genética , Tracto Gastrointestinal/metabolismo
4.
Heliyon ; 10(6): e27635, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38509999

RESUMEN

Seaweed has attracted attention as a bioactive source for preventing different chronic diseases, including liver injury and non-alcoholic fatty liver disease, the leading cause of liver-related mortality. Caulerpa lentillifera is characterized as tropical edible seaweed, currently being investigated for health benefits of its extracts and bioactive substances. This study examined the effects of C. lentillifera extract in ethyl acetate fraction (CLEA) on controlling lipid accumulation and lipid metabolism in HepG2 cells induced with oleic acid through the in vitro hepatic steatosis model. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that CLEA contained diverse organic compounds, including hydrocarbons, amino acids, and carboxylic acids. Docked conformation of dl-2-phenyltryptophane and benzoic acid, two major bioactive CLEA components, showed high affinity binding to SIRT1 and AMPK as target molecules of lipid metabolism. CLEA reduced lipid accumulation and intracellular triglyceride levels in HepG2 cells stimulated with oleic acid. The effect of CLEA on regulating expression of lipid metabolism-related molecules was investigated by qPCR and immunoblotting. CLEA promoted expression of the SIRT1 gene in oleic acid-treated HepG2 cells. CLEA also reduced expression levels of SREBF1, FAS, and ACC genes, which might be related to activation of AMPK signaling in lipid-accumulated HepG2 cells. These findings suggest that CLEA contains bioactive compounds potentially reducing triglyceride accumulation in lipid-accumulated HepG2 hepatocytes by controlling lipid metabolism molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA