Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glia ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780232

RESUMEN

Methamphetamine (Meth) use is known to induce complex neuroinflammatory responses, particularly involving astrocytes and microglia. Building upon our previous research, which demonstrated that Meth stimulates astrocytes to release tumor necrosis factor (TNF) and glutamate, leading to microglial activation, this study investigates the role of the anti-inflammatory cytokine interleukin-10 (IL-10) in this process. Our findings reveal that the presence of recombinant IL-10 (rIL-10) counteracts Meth-induced excessive glutamate release in astrocyte cultures, which significantly reduces microglial activation. This reduction is associated with the modulation of astrocytic intracellular calcium (Ca2+) dynamics, particularly by restricting the release of Ca2+ from the endoplasmic reticulum to the cytoplasm. Furthermore, we identify the small Rho GTPase Cdc42 as a crucial intermediary in the astrocyte-to-microglia communication pathway under Meth exposure. By employing a transgenic mouse model that overexpresses IL-10 (pMT-10), we also demonstrate in vivo that IL-10 prevents Meth-induced neuroinflammation. These findings not only enhance our understanding of Meth-related neuroinflammatory mechanisms, but also suggest IL-10 and Cdc42 as putative therapeutic targets for treating Meth-induced neuroinflammation.

2.
Neurobiol Dis ; 193: 106435, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38336279

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease, involving the selective degeneration of cortical upper synapses in the primary motor cortex (M1). Excitotoxicity in ALS occurs due to an imbalance between excitation and inhibition, closely linked to the loss/gain of astrocytic function. Using the ALS SOD1G93A mice, we investigated the astrocytic contribution for the electrophysiological alterations observed in the M1 of SOD1G93A mice, throughout disease progression. Results showed that astrocytes are involved in synaptic dysfunction observed in presymptomatic SOD1G93A mice, since astrocytic glutamate transport currents are diminished and pharmacological inhibition of astrocytes only impaired long-term potentiation and basal transmission in wild-type mice. Proteomic analysis revealed major differences in neuronal transmission, metabolism, and immune system in upper synapses, confirming early communication deficits between neurons and astroglia. These results provide valuable insights into the early impact of upper synapses in ALS and the lack of supportive functions of cortical astrocytes, highlighting the possibility of manipulating astrocytes to improve synaptic function.


Asunto(s)
Esclerosis Amiotrófica Lateral , Corteza Motora , Enfermedades Neurodegenerativas , Ratones , Animales , Astrocitos/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Ratones Transgénicos , Enfermedades Neurodegenerativas/metabolismo , Proteómica , Modelos Animales de Enfermedad , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
3.
Prog Neurobiol ; 234: 102586, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38369000

RESUMEN

Microglia dynamically reorganize their cytoskeleton to perform essential functions such as phagocytosis of toxic protein aggregates, surveillance of the brain parenchyma, and regulation of synaptic plasticity during neuronal activity bursts. Recent studies have shed light on the critical role of the microtubule cytoskeleton in microglial reactivity and function, revealing key regulators like cyclin-dependent kinase 1 and centrosomal nucleation in the remodeling of microtubules in activated microglia. Concurrently, the role of the actin cytoskeleton is also pivotal, particularly in the context of small GTPases like RhoA, Rac1, and Cdc42 and actin-binding molecules such as profilin-1 and cofilin. This article delves into the intricate molecular landscape of actin and microtubules, exploring their synergistic roles in driving microglial cytoskeletal dynamics. We propose a more integrated view of actin and microtubule cooperation, which is fundamental to understanding the functional coherence of the microglial cytoskeleton and its pivotal role in propelling brain homeostasis. Furthermore, we discuss how alterations in microglial cytoskeleton dynamics during aging and in disease states could have far-reaching implications for brain function. By unraveling the complexities of microglia cytoskeletal dynamics, we can deepen our understanding of microglial functional states and their implications in health and disease, offering insights into potential therapeutic interventions for neurologic disorders.


Asunto(s)
Actinas , Microglía , Humanos , Actinas/metabolismo , Microglía/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo
5.
Cell Rep ; 42(12): 113447, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37980559

RESUMEN

Microglia, the largest population of brain immune cells, continuously interact with synapses to maintain brain homeostasis. In this study, we use conditional cell-specific gene targeting in mice with multi-omics approaches and demonstrate that the RhoGTPase Rac1 is an essential requirement for microglia to sense and interpret the brain microenvironment. This is crucial for microglia-synapse crosstalk that drives experience-dependent plasticity, a fundamental brain property impaired in several neuropsychiatric disorders. Phosphoproteomics profiling detects a large modulation of RhoGTPase signaling, predominantly of Rac1, in microglia of mice exposed to an environmental enrichment protocol known to induce experience-dependent brain plasticity and cognitive performance. Ablation of microglial Rac1 affects pathways involved in microglia-synapse communication, disrupts experience-dependent synaptic remodeling, and blocks the gains in learning, memory, and sociability induced by environmental enrichment. Our results reveal microglial Rac1 as a central regulator of pathways involved in the microglia-synapse crosstalk required for experience-dependent synaptic plasticity and cognitive performance.


Asunto(s)
Encéfalo , Cognición , Microglía , Plasticidad Neuronal , Neuropéptidos , Proteína de Unión al GTP rac1 , Microglía/metabolismo , Cognición/fisiología , Animales , Ratones , Neuropéptidos/genética , Neuropéptidos/fisiología , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/fisiología , Masculino , Femenino , Ratones Mutantes , Sinapsis/fisiología , Encéfalo/fisiología , Técnicas de Silenciamiento del Gen
6.
Cell Death Dis ; 14(10): 690, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863874

RESUMEN

Microglia are the largest myeloid cell population in the brain. During injury, disease, or inflammation, microglia adopt different functional states primarily involved in restoring brain homeostasis. However, sustained or exacerbated microglia inflammatory reactivity can lead to brain damage. Dynamic cytoskeleton reorganization correlates with alterations of microglial reactivity driven by external cues, and proteins controlling cytoskeletal reorganization, such as the Rho GTPase RhoA, are well positioned to refine or adjust the functional state of the microglia during injury, disease, or inflammation. Here, we use multi-biosensor-based live-cell imaging approaches and tissue-specific conditional gene ablation in mice to understand the role of RhoA in microglial response to inflammation. We found that a decrease in RhoA activity is an absolute requirement for microglial metabolic reprogramming and reactivity to inflammation. However, without RhoA, inflammation disrupts Ca2+ and pH homeostasis, dampening mitochondrial function, worsening microglial necrosis, and triggering microglial apoptosis. Our results suggest that a minimum level of RhoA activity is obligatory to concatenate microglia inflammatory reactivity and survival during neuroinflammation.


Asunto(s)
Microglía , Enfermedades Neuroinflamatorias , Ratones , Animales , Microglía/metabolismo , Inflamación/metabolismo , Necrosis/metabolismo , Apoptosis
7.
Eur J Cell Biol ; 101(3): 151247, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35691123

RESUMEN

Microglia are the most prominent immune resident cell population in the central nervous system (CNS). In the healthy CNS, microglia survey their surrounding microenvironment, through recurrent extension and retraction of filopodia-like membrane protrusions, without evident cell body displacement. Microglia undergo dramatic transcriptomic and shape changes upon brain insults or neurodegenerative disease states and adopt a classical immune effector function (producing an extensive array of inflammatory mediators such as cytokines, chemokines, and reactive oxygen species) to re-establish tissue homeostasis. While the biophysical principles underlying microglia morphological changes remain elusive, several recent studies have highlighted the pivotal role of the actin and non-muscle myosin II filamentous cytoskeleton in this process. In this work, we discuss how subcellular topological patterning of the actin and myosin cytoskeleton can control microglial cell shape dynamics and how it can potentially feedback on their functional specialization, which is of great importance to understanding the mechanisms of microglial action in homeostatic conditions and CNS disease states.


Asunto(s)
Microglía , Enfermedades Neurodegenerativas , Actinas/metabolismo , Encéfalo/metabolismo , Humanos , Microglía/metabolismo , Neuronas/metabolismo
8.
Biomedicines ; 10(2)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35203447

RESUMEN

Microglia have been increasingly implicated in neurodegenerative diseases (NDs), and specific disease associated microglia (DAM) profiles have been defined for several of these NDs. Yet, the microglial profile in Machado-Joseph disease (MJD) remains unexplored. Here, we characterized the profile of microglia in the CMVMJD135 mouse model of MJD. This characterization was performed using primary microglial cultures and microglial cells obtained from disease-relevant brain regions of neonatal and adult CMVMJD135 mice, respectively. Machine learning models were implemented to identify potential clusters of microglia based on their morphological features, and an RNA-sequencing analysis was performed to identify molecular perturbations and potential therapeutic targets. Our findings reveal morphological alterations that point to an increased activation state of microglia in CMVMJD135 mice and a disease-specific transcriptional profile of MJD microglia, encompassing a total of 101 differentially expressed genes, with enrichment in molecular pathways related to oxidative stress, immune response, cell proliferation, cell death, and lipid metabolism. Overall, these results allowed us to define the cellular and molecular profile of MJD-associated microglia and to identify genes and pathways that might represent potential therapeutic targets for this disorder.

9.
FEBS J ; 289(24): 7760-7775, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34510775

RESUMEN

c-Src was the first protein kinase to be described as capable of phosphorylating tyrosine residues. Subsequent identification of other tyrosine-phosphorylating protein kinases with a similar structure to c-Src gave rise to the concept of Src family kinases (SFKs). Microglia are the resident innate immune cell population of the CNS. Under physiological conditions, microglia actively participate in brain tissue homeostasis, continuously patrolling the neuronal parenchyma and exerting neuroprotective actions. Activation of pathogen-associated molecular pattern (PAMP) and damage-associated molecular pattern (DAMP) receptors induces microglial proliferation, migration toward pathological foci, phagocytosis, and changes in gene expression, concurrent with the secretion of cytokines, chemokines, and growth factors. A significant body of literature shows that SFK stimulation positively associates with microglial activation and neuropathological conditions, including Alzheimer's and Parkinson's diseases. Here, we review essential microglial homeostatic functions regulated by SFKs, including phagocytosis, environmental sensing, and secretion of inflammatory mediators. In addition, we discuss the potential of SFK modulation for microglial homeostasis in Parkinson's and Alzheimer's diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Humanos , Familia-src Quinasas/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Microglía , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Proteínas Tirosina Quinasas , Tirosina
10.
Proc Biol Sci ; 288(1962): 20211531, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34753356

RESUMEN

In addition to the morphophysiological changes experienced by amphibians during metamorphosis, they must also deal with a different set of environmental constraints when they shift from the water to the land. We found that Pithecopus azureus secretes a single peptide ([M + H]+ = 658.38 Da) at the developmental stage that precedes the onset of terrestrial behaviour. De novo peptide and cDNA sequencing revealed that the peptide, named PaT-2, is expressed in tandem and is a member of the tryptophyllins family. In silico studies allowed us to identify the position of reactive sites and infer possible antioxidant mechanisms of the compounds. Cell-based assays confirmed the predicted antioxidant activity in mammalian microglia and neuroblast cells. The potential neuroprotective effect of PaT-2 was further corroborated in FRET-based live cell imaging assays, where the peptide prevented lipopolysaccharide-induced ROS production and glutamate release in human microglia. In summary, PaT-2 is the first peptide expressed during the ontogeny of P. azureus, right before the metamorphosing froglet leaves the aquatic environment to occupy terrestrial habitats. The antioxidant activity of PaT-2, predicted by in silico analyses and confirmed by cell-based assays, might be relevant for the protection of the skin of P. azureus adults against increased O2 levels and UV exposure on land compared with aquatic environments.


Asunto(s)
Antioxidantes , Agua , Animales , Antioxidantes/análisis , Anuros/fisiología , Humanos , Mamíferos , Péptidos/análisis , Piel , Agua/análisis
11.
Neuropsychopharmacology ; 46(13): 2358-2370, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34400780

RESUMEN

Methamphetamine (Meth) is a powerful illicit psychostimulant, widely used for recreational purposes. Besides disrupting the monoaminergic system and promoting oxidative brain damage, Meth also causes neuroinflammation, contributing to synaptic dysfunction and behavioral deficits. Aberrant activation of microglia, the largest myeloid cell population in the brain, is a common feature in neurological disorders triggered by neuroinflammation. In this study, we investigated the mechanisms underlying the aberrant activation of microglia elicited by Meth in the adult mouse brain. We found that binge Meth exposure caused microgliosis and disrupted risk assessment behavior (a feature that usually occurs in individuals who abuse Meth), both of which required astrocyte-to-microglia crosstalk. Mechanistically, Meth triggered a detrimental increase of glutamate exocytosis from astrocytes (in a process dependent on TNF production and calcium mobilization), promoting microglial expansion and reactivity. Ablating TNF production, or suppressing astrocytic calcium mobilization, prevented Meth-elicited microglia reactivity and re-established risk assessment behavior as tested by elevated plus maze (EPM). Overall, our data indicate that glial crosstalk is critical to relay alterations caused by acute Meth exposure.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Metanfetamina , Factor de Necrosis Tumoral alfa , Animales , Astrocitos , Estimulantes del Sistema Nervioso Central/toxicidad , Ácido Glutámico , Metanfetamina/toxicidad , Ratones , Microglía
12.
Free Radic Biol Med ; 163: 43-55, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33307167

RESUMEN

Adenosine is an important neuromodulator in the CNS, regulating neuronal survival and synaptic transmission. The antioxidant ascorbate (the reduced form of vitamin C) is concentrated in CNS neurons through a sodium-dependent transporter named SVCT2 and participates in several CNS processes, for instance, the regulation of glutamate receptors functioning and the synthesis of neuromodulators. Here we studied the interplay between the adenosinergic system and ascorbate transport in neurons. We found that selective activation of A3, but not of A1 or A2a, adenosine receptors modulated ascorbate transport, decreasing intracellular ascorbate content. Förster resonance energy transfer (FRET) analyses showed that A3 receptors associate with the ascorbate transporter SVCT2, suggesting tight signaling compartmentalization between A3 receptors and SVCT2. The activation of A3 receptors increased ascorbate release in an SVCT2-dependent manner, which largely altered the neuronal redox status without interfering with cell death, glycolytic metabolism, and bioenergetics. Overall, by regulating vitamin C transport, the adenosinergic system (via activation of A3 receptors) can regulate ascorbate bioavailability and control the redox balance in neurons.


Asunto(s)
Receptor de Adenosina A3 , Transportadores de Sodio Acoplados a la Vitamina C , Ácido Ascórbico , Neuronas/metabolismo , Oxidación-Reducción , Receptor de Adenosina A3/genética , Transportadores de Sodio Acoplados a la Vitamina C/genética , Transportadores de Sodio Acoplados a la Vitamina C/metabolismo
13.
STAR Protoc ; 1(3): 100147, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33377041

RESUMEN

This protocol highlights the use of FRET-based biosensors to investigate signaling events during microglia activation in real time. Understanding microglia activation has gained momentum as it can help decipher signaling mechanisms underlying the neurodegenerative process occurring in neurological disorders. Unlike more traditional methods widely employed in the microglia field, FRET allows microglia signaling events to be studied in real time with exquisite subcellular resolution. However, FRET-based live-cell imaging requires application-specific biosensors and specialized imaging systems, limiting its use in in vivo studies. For complete details on the use and execution of this protocol, please refer to Socodato et al. (2020), Portugal et al. (2017), and Socodato et al. (2018).


Asunto(s)
Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Microglía/citología , Línea Celular , Diagnóstico por Imagen , Técnica del Anticuerpo Fluorescente/métodos , Microglía/metabolismo , Microglía/fisiología , Microscopía Fluorescente/métodos , Transducción de Señal , Coloración y Etiquetado/métodos
14.
Sci Signal ; 13(650)2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963013

RESUMEN

Alcohol abuse adversely affects the lives of millions of people worldwide. Deficits in synaptic transmission and in microglial function are commonly found in human alcohol abusers and in animal models of alcohol intoxication. Here, we found that a protocol simulating chronic binge drinking in male mice resulted in aberrant synaptic pruning and substantial loss of excitatory synapses in the prefrontal cortex, which resulted in increased anxiety-like behavior. Mechanistically, alcohol intake increased the engulfment capacity of microglia in a manner dependent on the kinase Src, the subsequent activation of the transcription factor NF-κB, and the consequent production of the proinflammatory cytokine TNF. Pharmacological blockade of Src activation or of TNF production in microglia, genetic ablation of Tnf, or conditional ablation of microglia attenuated aberrant synaptic pruning, thereby preventing the neuronal and behavioral effects of the alcohol. Our data suggest that aberrant pruning of excitatory synapses by microglia may disrupt synaptic transmission in response to alcohol abuse.


Asunto(s)
Ansiedad/fisiopatología , Conducta Animal/efectos de los fármacos , Etanol/administración & dosificación , Plasticidad Neuronal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Ansiedad/psicología , Conducta Animal/fisiología , Células Cultivadas , Depresores del Sistema Nervioso Central/administración & dosificación , Etanol/sangre , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microglía/citología , Microglía/efectos de los fármacos , Microglía/metabolismo , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
15.
Food Res Int ; 136: 109548, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32846600

RESUMEN

The aims of this study were to produce poly-ɛ-caprolactone lipid-core nanocapsules containing lycopene-rich extract from red guava (LEG), to characterize those nanoparticles and to evaluate their cytotoxic effects on human breast cancer cells. Lipid-core nanocapsules containing the extract (nanoLEG) were produced by the method of interfacial deposition of the preformed polymer. The nanoparticles were characterized by Dynamic Light Scattering (DLS), Polydispersity Index, Zeta Potential, pH, Encapsulation Efficiency, Nanoparticle Tracking Analysis (NTA), Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM). Cell viability was evaluated by the MTT dye reduction method in the human breast cancer MCF-7 cell line and inhibition of ROS and NF-κB was assayed in living human microglial cell line (HMC3) by time-lapse images microscopy. A hemolytic activity assay was carried out with sheep blood. Data showed that nanoparticles average size was around 200 nm, nanoparticles concentration/mL was around 0.1 µM, negative zeta potential, pH < 5.0 and spherical shape, with low variation during a long storage period (7 months) at 5 °C, indicating stability of the system and protection against lycopene degradation. The percentage of encapsulation varied from 95% to 98%. The nanoLEG particles significantly reduced the viability of the MCF-7 cells after 24 h (61.47%) and 72 h (55.96%) of exposure, even at the lowest concentration tested (6.25-200 µg/ml) and improved on the cytotoxicity of free LEG to MCF-7. NanoLEG inhibited LPS-induced NF-kB activation and ROS production in microglial cells. The particles did not affect the membrane integrity of sheep blood erythrocytes at the concentrations tested (6.25-200 µg/mL). Thus, the formulation of lipid-core nanocapsules with a polysorbate 80-coated poly-ɛ-caprolactone wall was efficiently applied to stabilize the lycopene-rich extract from red guava, generating a product with satisfactory physico-chemical and biological properties for application as health-promoting nanotechnology-based nutraceutical, emphasizing its potential to be used as a cancer treatment.


Asunto(s)
Neoplasias de la Mama , Nanocápsulas , Psidium , Animales , Neoplasias de la Mama/tratamiento farmacológico , Caproatos , Humanos , Lactonas , Lípidos , Licopeno , Extractos Vegetales/farmacología , Ovinos
16.
Cell Rep ; 31(12): 107796, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32579923

RESUMEN

Nervous tissue homeostasis requires the regulation of microglia activity. Using conditional gene targeting in mice, we demonstrate that genetic ablation of the small GTPase Rhoa in adult microglia is sufficient to trigger spontaneous microglia activation, producing a neurological phenotype (including synapse and neuron loss, impairment of long-term potentiation [LTP], formation of ß-amyloid plaques, and memory deficits). Mechanistically, loss of Rhoa in microglia triggers Src activation and Src-mediated tumor necrosis factor (TNF) production, leading to excitotoxic glutamate secretion. Inhibiting Src in microglia Rhoa-deficient mice attenuates microglia dysregulation and the ensuing neurological phenotype. We also find that the Rhoa/Src signaling pathway is disrupted in microglia of the APP/PS1 mouse model of Alzheimer disease and that low doses of Aß oligomers trigger microglia neurotoxic polarization through the disruption of Rhoa-to-Src signaling. Overall, our results indicate that disturbing Rho GTPase signaling in microglia can directly cause neurodegeneration.


Asunto(s)
Envejecimiento/patología , Microglía/patología , Degeneración Nerviosa/patología , Neuronas/metabolismo , Proteína de Unión al GTP rhoA/deficiencia , Envejecimiento/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Proteína Tirosina Quinasa CSK , Línea Celular , Polaridad Celular , Supervivencia Celular , Ratones Endogámicos C57BL , Microglía/metabolismo , Fenotipo , Sinapsis/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo
17.
Biochim Biophys Acta Mol Cell Res ; 1867(8): 118732, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32360667

RESUMEN

Nitric oxide is an important neuromodulator in the CNS, and its production within neurons is modulated by NMDA receptors and requires a fine-tuned availability of L-arginine. We have previously shown that globally inhibiting protein synthesis mobilizes intracellular L-arginine "pools" in retinal neurons, which concomitantly enhances neuronal nitric oxide synthase-mediated nitric oxide production. Activation of NMDA receptors also induces local inhibition of protein synthesis and L-arginine intracellular accumulation through calcium influx and stimulation of eucariotic elongation factor type 2 kinase. We hypothesized that protein synthesis inhibition might also increase intracellular L-arginine availability to induce nitric oxide-dependent activation of downstream signaling pathways. Here we show that nitric oxide produced by inhibiting protein synthesis (using cycloheximide or anisomycin) is readily coupled to AKT activation in a soluble guanylyl cyclase and cGKII-dependent manner. Knockdown of cGKII prevents cycloheximide or anisomycin-induced AKT activation and its nuclear accumulation. Moreover, in retinas from cGKII knockout mice, cycloheximide was unable to enhance AKT phosphorylation. Indeed, cycloheximide also produces an increase of ERK phosphorylation which is abrogated by a nitric oxide synthase inhibitor. In summary, we show that inhibition of protein synthesis is a previously unanticipated driving force for nitric oxide generation and activation of downstream signaling pathways including AKT and ERK in cultured retinal cells. These results may be important for the regulation of synaptic signaling and neuronal development by NMDA receptors as well as for solving conflicting data observed when using protein synthesis inhibitors for studying neuronal survival during development as well in behavior and memory studies.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo II/metabolismo , Óxido Nítrico/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Retina/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Arginina/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Pollos , Proteína Quinasa Dependiente de GMP Cíclico Tipo II/genética , Quinasa del Factor 2 de Elongación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Nitratos/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Nitritos , Fosforilación
18.
J Nat Prod ; 83(4): 972-984, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32134261

RESUMEN

The skin glands of amphibian species hold a major component of their innate immunity, namely a unique set of antimicrobial peptides (AMPs). Although most of them have common characteristics, differences in AMP sequences allow a huge repertoire of biological activity with varying degrees of efficacy. We present the first study of the AMPs from Pleurodema somuncurence (Anura: Leptodactylidae: Leiuperinae). Among the 11 identified mature peptides, three presented antimicrobial activity. Somuncurin-1 (FIIWPLRYRK), somuncurin-2 (FILKRSYPQYY), and thaulin-3 (NLVGSLLGGILKK) inhibited Escherichia coli growth. Somuncurin-1 also showed antimicrobial activity against Staphylococcus aureus. Biophysical membrane model studies revealed that this peptide had a greater permeation effect in prokaryotic-like membranes and capacity to restructure liposomes, suggesting fusogenic activity, which could lead to cell aggregation and disruption of cell morphology. This study contributes to the characterization of peptides with new sequences to enrich the databases for the design of therapeutic agents. Furthermore, it highlights the importance of investing in nature conservation and the power of genetic description as a strategy to identify new compounds.


Asunto(s)
Especies en Peligro de Extinción , Péptidos/química , Péptidos/farmacología , Ranidae/metabolismo , Piel/química , Secuencia de Aminoácidos , Animales , Antioxidantes/farmacología , Argentina , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Escherichia coli/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Liposomas/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Permeabilidad , Staphylococcus aureus/efectos de los fármacos
19.
J Neurochem ; 153(3): 297-299, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32091130

RESUMEN

Endocannabinoids (eCBs) play key roles in short-term and long-term synaptic plasticity in the corticostriatal circuit. By activating cannabinoid receptors expressed in the central nervous system, eCBs regulate several neural functions and behaviors. The major eCB 2-arachidonoyl-glycerol (2-AG) is particularly important for triggering a short-term form of synaptic plasticity (depolarization-induced suppression of excitatory transmission or DSE) on cortical glutamatergic afferents inputting the striatum. The neurotransmitter dopamine, through the action of D1 and D2 receptors, is also critically involved in corticostriatal plasticity. This Editorial highlights the study by Shonesy et al., which presents evidence that activation of dopamine D1 receptor and its classical downstream target cAMP-dependent protein kinase (PKA) are involved in increasing the synthesis of 2-AG in striatal medium spiny neurons (MSN) to drive DSE in the corticostriatal circuit, as schematically outlined in Figure 1. The authors used a set of complementary approaches and identified a putative serine (Ser) residue phosphorylated by PKA in diacylglycerol lipase (DGL) alpha that is required for generating 2-AG, providing a mechanistic clue into how the canonical D1 pathway in MSN might fine-tune short-term plasticity in the corticostriatal circuit. Besides, the work by Shonesy et al. may pave the way for further studies exploring the signaling interplay between canonical dopamine D1 receptor pathway and eCBs to control other forms of synaptic plasticity in different brain circuits with possible pathological relevance.


Asunto(s)
Cuerpo Estriado/metabolismo , Endocannabinoides/metabolismo , Plasticidad Neuronal/fisiología , Receptores de Dopamina D1/metabolismo , Animales , Ácidos Araquidónicos/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glicéridos/metabolismo , Humanos , Lipoproteína Lipasa/metabolismo , Sinapsis/metabolismo
20.
Sci Rep ; 10(1): 2696, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060388

RESUMEN

Cutaneous secretions of amphibians have bioactive compounds, such as peptides, with potential for biotechnological applications. Therefore, this study aimed to determine the primary structure and investigate peptides obtained from the cutaneous secretions of the amphibian, Leptodactylus vastus, as a source of bioactive molecules. The peptides obtained possessed the amino acid sequences, GVVDILKGAAKDLAGH and GVVDILKGAAKDLAGHLASKV, with monoisotopic masses of [M + H]± = 1563.8 Da and [M + H]± = 2062.4 Da, respectively. The molecules were characterized as peptides of the class of ocellatins and were named as Ocellatin-K1(1-16) and Ocellatin-K1(1-21). Functional analysis revealed that Ocellatin-K1(1-16) and Ocellatin-K1(1-21) showed weak antibacterial activity. However, treatment of mice with these ocellatins reduced the nitrite and malondialdehyde content. Moreover, superoxide dismutase enzymatic activity and glutathione concentration were increased in the hippocampus of mice. In addition, Ocellatin-K1(1-16) and Ocellatin-K1(1-21) were effective in impairing lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) formation and NF-kB activation in living microglia. We incubated hippocampal neurons with microglial conditioned media treated with LPS and LPS in the presence of Ocellatin-K1(1-16) and Ocellatin-K1(1-21) and observed that both peptides reduced the oxidative stress in hippocampal neurons. Furthermore, these ocellatins demonstrated low cytotoxicity towards erythrocytes. These functional properties suggest possible to neuromodulatory therapeutic applications.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Anuros/metabolismo , Hipocampo/efectos de los fármacos , Infecciones/tratamiento farmacológico , Neuronas/efectos de los fármacos , Secuencia de Aminoácidos/genética , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Hipocampo/metabolismo , Infecciones/inducido químicamente , Infecciones/genética , Infecciones/microbiología , Lipopolisacáridos/toxicidad , Ratones , Microglía/efectos de los fármacos , FN-kappa B/genética , Neuronas/metabolismo , Nitritos/antagonistas & inhibidores , Nitritos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...