Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Reprod Biomed Online ; 47(5): 103289, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37657301

RESUMEN

RESEARCH QUESTION: Do microRNAs (miRNAs) play a role in regulating endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) in decidualized cells and endometrium associated with reproductive failures? DESIGN: Endometrial stromal cell line St-T1b was decidualized in vitro with 8-Br-cAMP over 5 days, or treated with the ERS inducer thapsigargin. Expression of ERS sensors, UPR markers and potential miRNA regulators was analysed by quantitative PCR. Endometrial biopsies from patients with recurrent pregnancy loss (RPL) and recurrent implantation failure (RIF) were investigated for the location of miRNA expression. RESULTS: Decidualization of St-T1b cells resulted in increased expression of ERS sensors including ATF6α, PERK and IRE1α, and the UPR marker, CHOP. TXNIP, which serves as a link between the ERS pathway and inflammation, as well as inflammasome NLRP3 and interleukin 1ß expression increased in decidualized cells. An in-silico analysis identified miR-17-5p, miR-21-5p and miR-193b-3p as miRNAs potentially involved in regulation of the ERS/UPR pathways and inflammation associated with embryo implantation. Their expression decreased significantly (P ≤ 0.0391) in non-decidualized cells in the presence of thapsigargin. Finally, expression of the selected miRNAs was localized by in-situ hybridization in stromal and glandular epithelial cells in endometrial samples from patients with RPL and RIF. Expression in stroma cells from patients with RPL was lower in comparison with stroma cells from patients with RIF. CONCLUSIONS: Decidualization in St-T1b cells is accompanied by ERS/UPR processes, associated with an inflammatory response that is potentially influenced by miR-17-5p, miR-21-5p and miR-193b-3p. These miRNAs are expressed differentially in stromal cells from patients with RPL and RIF, indicating an alteration in regulation of the ERS/UPR pathways.


Asunto(s)
Aborto Habitual , MicroARNs , Embarazo , Femenino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Endorribonucleasas/metabolismo , Tapsigargina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Endometrio/metabolismo , Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Aborto Habitual/patología , Inflamación/metabolismo
2.
Am J Reprod Immunol ; 87(1): e13423, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33764560

RESUMEN

PROBLEM: Decidualized cells display an active role during embryo implantation sensing blastocyst quality, allowing the implantation of normal developed blastocysts and preventing the invasion of impaired developed ones. Here, we characterized the immune microenvironment generated by decidualized cells in response to soluble factors secreted by blastocysts that shape the receptive milieu. METHOD OF STUDY: We used an in vitro model of decidualization based on the Human Endometrial Stromal Cells line (HESC) differentiated with medroxiprogesterone and dibutyryl-cAMP, then treated with human blastocysts-conditioned media (BCM) classified according to their quality. RESULTS: Decidualized cells treated with BCM from impaired developed blastocysts increased IL-1ß production. Next, we evaluated the ability of decidualized cells to modulate other mediators associated with menstruation as chemokines. Decidualized cells responded to stimulation with BCM from impaired developed blastocysts increasing CXCL12 expression and CXCL8 secretion. The modulation of these markers was associated with the recruitment and activation of neutrophils, while regulatory T cells recruitment was restrained. These changes were not observed in the presence of BCM from normal developed blastocysts. CONCLUSION: Soluble factors released by impaired developed blastocysts induce an exacerbated inflammatory response associated with neutrophils recruitment and activation, providing new clues to understand the molecular basis of the embryo-endometrial dialogue.


Asunto(s)
Blastocisto/fisiología , Decidua/metabolismo , Implantación del Embrión/fisiología , Inflamación/metabolismo , Células del Estroma/metabolismo , Blastocisto/efectos de los fármacos , Línea Celular , Decidua/efectos de los fármacos , Implantación del Embrión/efectos de los fármacos , Femenino , Humanos , Medroxiprogesterona/administración & dosificación , Células del Estroma/efectos de los fármacos
3.
Front Immunol ; 11: 1571, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973738

RESUMEN

Decidualization is a process that involves phenotypic and functional changes of endometrial stromal cells to sustain endometrial receptivity and the participation of immunoregulatory factors to maintain immune homeostasis. In this context, tolerogenic dendritic cells (DCs) can induce regulatory T cells, which are essential to manage the pro- to anti-inflammatory transition during embryo implantation. Recently, Myeloid Regulatory Cells (MRCs) were proposed as immunosuppressants and tolerance-inducer cells, including the DC-10 subset. This novel and distinctive subset has the ability to produce IL-10 and to induce type 1 regulatory T cells (Tr1) through an HLA-G pathway. Here we focus on the impact of the decidualization process in conditioning peripheral monocytes to MRCs and the DC-10 subset, and their ability to induce regulatory T cells. An in vitro model of decidualization with the human endometrial stromal cell line (HESC), decidualized by medroxyprogesterone and dibutyryl-cAMP was used. Monocytes isolated from peripheral blood mononuclear cells from healthy women were cultured with rhGM-CSF + rhIL-4 and then, the effect of conditioned media from decidualized (Dec-CM) and non-decidualized cells (Non-dec-CM) was tested on monocyte cultures. We found that Dec-CM inhibited the differentiation to the CD1a+CD14- immature DC profile in a concentration-dependent manner. Dec-CM also significantly increased the frequency of CD83+CD86low and HLA-DR+ cells in the monocyte-derived culture. These markers, associated with the increased production of IL-10, are consistent with a MRCs tolerogenic profile. Interestingly, Dec-CM treatment displayed a higher expression of the characteristic markers of the tolerogenic DC-10 subset, HLA-G and ILT2/CD85j; while this modulation was not observed in cultures treated with Non-dec-CM. Moreover, when monocyte cultures with Dec-CM were challenged with LPS, they sustained a higher IL-10 production and prevented the increase of CD83, CD86, IL-12p70, and TNF-α expression. Finally, the DC-10 subset was able to induce a CD4+HLA-G+ regulatory T cells subset. These results suggest that the decidualization process might induce different subsets of MRCs, like DC-10, able to induce regulatory T cells as a novel CD4+HLA-G+ subset which might play an immunoregulatory role in embryo implantation.


Asunto(s)
Decidua/fisiología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Tolerancia Inmunológica , Interleucina-10/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Biomarcadores , Diferenciación Celular , Línea Celular , Células Dendríticas/citología , Endocitosis/inmunología , Endometrio/citología , Endometrio/fisiología , Femenino , Citometría de Flujo , Humanos , Inmunofenotipificación , Lipopolisacáridos/inmunología , Prueba de Cultivo Mixto de Linfocitos , Células Mieloides/inmunología , Células Mieloides/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
4.
Reproduction ; 159(4): R203-R211, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31990665

RESUMEN

Decidualization denotes the reprogramming of endometrial stromal cells that includes the secretion of different mediators like cytokines, chemokines, and the selective recruitment of immune cells. This physiological process involves changes in the secretome of the endometrial stromal cells leading to the production of immunomodulatory factors. The increased amount of protein secretion is associated with a physiological endoplasmic reticulum (ER) stress and the resulting unfolded protein response (UPR), allowing the expansion of ER and the machinery to assist the protein folding. Notably, the signaling pathways involved in the ER stress and the UPR are interconnected with the onset of a sterile inflammatory response, as well as with angiogenesis. Both of these processes have a key role in decidualization and placentation, therefore, alterations in them could lead to pregnancy complications. In this review, we will discuss how the induction of ER stress and the UPR processes that accompanies the decidualization are associated with embryo implantation and whether they might condition pregnancy outcome. The ER stress activates/triggers sensing proteins which, among others, induces kinase/RNAse-TXNIP expression, activating the NLRP3 inflammasome. This multiprotein system allows caspase-1 activation, which catalyzes the cleavage of the inactive IL-1ß proform toward the mature secretory form, with pro-implantatory effects. However, the sterile inflammatory response should be later controlled in favor of a tolerogenic microenvironment to sustain pregnancy. In accordance, alterations of the ER stress and UPR processes can be reflected in recurrent implantation failures (RIF), recurrent pregnancy loss (RPL), or complications associated with deficient placentation, such as preeclampsia (PE).


Asunto(s)
Decidua/fisiología , Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Implantación del Embrión , Femenino , Humanos , Interleucina-1/fisiología , Ciclo Menstrual , MicroARNs/metabolismo
5.
Sci Rep ; 9(1): 17152, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748639

RESUMEN

The transport of nutrients across the placenta involves trophoblast cell specific transporters modulated through the mammalian target of rapamycin (mTOR). The vasoactive intestinal peptide (VIP) has embryotrophic effects in mice and regulates human cytotrophoblast cell migration and invasion. Here we explored the effect of VIP on glucose and System A amino acid uptake by human trophoblast-derived cells (Swan 71 and BeWo cell lines). VIP activated D-glucose specific uptake in single cytotrophoblast cells in a concentration-dependent manner through PKA, MAPK, PI3K and mTOR signalling pathways. Glucose uptake was reduced in VIP-knocked down cytotrophoblast cells. Also, VIP stimulated System A amino acid uptake and the expression of GLUT1 glucose transporter and SNAT1 neutral amino acid transporter. VIP increased mTOR expression and mTOR/S6 phosphorylation whereas VIP silencing reduced mTOR mRNA and protein expression. Inhibition of mTOR signalling with rapamycin reduced the expression of endogenous VIP and of VIP-induced S6 phosphorylation. Our findings support a role of VIP in the transport of glucose and neutral amino acids in cytotrophoblast cells through mTOR-regulated pathways and they are instrumental for understanding the physiological regulation of nutrient sensing by endogenous VIP at the maternal-foetal interface.


Asunto(s)
Aminoácidos Neutros/metabolismo , Glucosa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Trofoblastos/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Transporte Biológico/fisiología , Línea Celular , Femenino , Humanos , Placenta/metabolismo , Embarazo , ARN Mensajero/metabolismo , Transducción de Señal/fisiología
6.
Front Immunol ; 10: 2907, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31969877

RESUMEN

Uterine receptivity and embryo implantation are two main processes that need a finely regulated balance between pro-inflammatory and tolerogenic mediators to allow a successful pregnancy. The neuroimmune peptide vasoactive intestinal peptide (VIP) is a key regulator, and it is involved in the induction of regulatory T cells (Tregs), which are crucial in both processes. Here, we analyzed the ability of endogenous and exogenous VIP to sustain a tolerogenic microenvironment during the peri-implantation period, particularly focusing on Treg recruitment. Wild-type (WT) and VIP-deficient mice [heterozygous (HT, +/-), knockout (KO, -/-)], and FOXP3-knock-in-GFP mice either pregnant or in estrus were used. During the day of estrus, we found significant histological differences between the uterus of WT mice vs. VIP-deficient mice, with the latter exhibiting undetectable levels of FOXP3 expression, decreased expression of interleukin (IL)-10, and vascular endothelial growth factor (VEGF)c, and increased gene expression of the Th17 proinflammatory transcription factor RORγt. To study the implantation window, we mated WT and VIP (+/-) females with WT males and observed altered FOXP3, VEGFc, IL-10, and transforming growth factor (TGF)ß gene expression at the implantation sites at day 5.5 (d5.5), demonstrating a more inflammatory environment in VIP (+/-) vs. VIP (+/+) females. A similar molecular profile was observed at implantation sites of WT × WT mice treated with VIP antagonist at d3.5. We then examined the ability GFP-sorted CD4+ cells from FOXP3-GFP females to migrate toward conditioned media (CM) obtained from d5.5 implantation sites cultured in the absence/presence of VIP or VIP antagonist. VIP treatment increased CD4+FOXP3+ and decreased CD4+ total cell migration towards implantation sites, and VIP antagonist prevented these effects. Finally, we performed adoptive cell transfer of Tregs (sorted from FOXP3-GFP females) in VIP-deficient-mice, and we observed that FOXP3-GFP cells were mainly recruited into the uterus/implantation sites compared to all other tested tissues. In addition, after Treg transfer, we found an increase in IL-10 expression and VEGFc in HT females and allowed embryo implantation in KO females. In conclusion, VIP contributes to a local tolerogenic response necessary for successful pregnancy, preventing the development of a hostile uterine microenvironment for implantation by the selective recruitment of Tregs during the peri-implantation period.


Asunto(s)
Implantación del Embrión/inmunología , Placenta/inmunología , Linfocitos T Reguladores/inmunología , Útero/inmunología , Péptido Intestinal Vasoactivo/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Microambiente Celular , Femenino , Factores de Transcripción Forkhead/inmunología , Interleucina-10/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Embarazo , Factor A de Crecimiento Endotelial Vascular/inmunología
7.
Mol Cell Endocrinol ; 460: 63-72, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28689770

RESUMEN

The decidualization process involves phenotype and functional changes on endometrial cells and the modulation of mediators with immunoregulatory properties as the vasoactive intestinal peptide (VIP). We investigate VIP contribution to the decidualization program and to immunoregulation throughout the human embryo implantation process. The decidualization of Human endometrial stromal cell line (HESC) with Medroxyprogesterone-dibutyryl-cAMP increased VIP/VPAC-receptors system. In fact, VIP could induce decidualization increasing differentiation markers (IGFBP1, PRL, KLF13/KLF9 ratio, CXCL12, CXCL8 and CCL2) and allowing Blastocyst-like spheroids (BLS) invasion in an in vitro model of embryo implantation. Focus on the tolerogenic effects, decidualized cells induced a semi-mature profile on maternal dendritic cells; restrained CD4+ cells recruitment while increased regulatory T-cells recruitment. Interestingly, the human blastocyst conditioned media from developmentally impaired embryos diminished the invasion and T-regulatory cells recruitment in these settings. These evidences suggest that VIP contributes to the implantation process inducing decidualization, allowing BLS invasion and favoring a tolerogenic micro-environment.


Asunto(s)
Decidua/metabolismo , Implantación del Embrión/inmunología , Péptido Intestinal Vasoactivo/metabolismo , Biomarcadores/metabolismo , Blastocisto/citología , Línea Celular , Microambiente Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Implantación del Embrión/efectos de los fármacos , Endometrio/citología , Femenino , Humanos , Tolerancia Inmunológica , Modelos Biológicos , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo
8.
Mol Cell Endocrinol ; 443: 146-154, 2017 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-28104390

RESUMEN

Trophoblast cells produce several inmmuneregulators like the Vasoactive Intestinal Peptide (VIP) and P4 targeting multiple circuits, and also display an intese phagocytic ability allowing embryo implantation in a tolerogenic context. Here, we explored whether P4 and VIP- crosstalk modulates trophoblast cell function, focus on the phagocytic ability and the immune homeostasis maintenance. P4 enhanced the phagocytosis in trophoblast-derived cells quantified by the engulfment of latex-beads or eryptotic erythrocytes. P4 and VIP modulated the balance of anti/pro-inflammatory mediators, increasing TGF-ß expression, with no changes in IL-1, IL-6, or nitrites production. This modulation was accompained by transcription factor expression changes that could turn on tolerogenic programs represented by increased PPAR-γ and decreased IRF-5 expression. Finally, P4 stimulated VPAC2 expression in trophoblast cells and VPAC2 over-expression enhanced phagocytosis mimicking P4-effect. Therefore, P4 and VIP network enhances the phagocytic ability of trophoblast-derived cells, through a mechanism involving VPAC2 accompained with an anti-inflammatory context.


Asunto(s)
Antiinflamatorios/metabolismo , Fagocitosis , Progesterona/farmacología , Trofoblastos/citología , Trofoblastos/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Línea Celular , Humanos , Fagocitosis/efectos de los fármacos , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Factores de Transcripción/metabolismo
9.
J Leukoc Biol ; 98(1): 49-58, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25877932

RESUMEN

Inducible regulatory T cells (Tregs) exert a timely and efficient immunosuppressive action at the critical peri-implantation stage essential for maternal tolerance to the conceptus. Vasoactive intestinal peptide (VIP) promotes anti-inflammatory and tolerogenic profiles through binding to VIP receptors on immune cells. We evaluated whether VIP produced by trophoblast cells induces Tregs during the early interaction of maternal leukocytes with trophoblast cells, thus contributing to maternal tolerance. We used an in vitro model of maternal leukocyte-trophoblast cell interaction represented by cocultures of fertile women's PBMCs with a human trophoblast cell line (Swan-71) and evaluated the effect of VIP added exogenously and of the endogenous polypeptide. VIP increased the frequency of CD4(+)CD25(+)FoxP3(+) cells after coculture, and these cells were able to suppress the maternal alloresponse. VIP also increased the frequency of CD4(+)IL10(+) and CD4(+)TGFß(+) cells, but it did not modulate IFN-γ or IL-17 production. Swan-71 secreted VIP, and their coculture with maternal PBMCs significantly increased the frequency of Tregs. This effect was even more pronounced if the trophoblast cells had been pretreated with VIP. In both situations, the VIP antagonist prevented the increase in the frequency of CD4(+)Foxp3(+) cells, reflecting a specific effect of the polypeptide after the interaction with Swan-71 cells. Finally, the increase in CD4(+)CD25(+)FoxP3(+) frequency was prevented by an anti-TGF-ß Ab and a VIP antagonist. These results suggest that VIP could have an active role in the immunoregulatory processes operating in the maternal-placental interface by contributing to the induction of Tregs through a mechanism involving TGF-ß1.


Asunto(s)
Comunicación Celular , Leucocitos/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Trofoblastos/efectos de los fármacos , Péptido Intestinal Vasoactivo/farmacología , Línea Celular , Técnicas de Cocultivo , Femenino , Humanos , Técnicas In Vitro , Interleucina-10/biosíntesis , Leucocitos/citología , Embarazo , Primer Trimestre del Embarazo , Reacción en Cadena en Tiempo Real de la Polimerasa , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta1/biosíntesis , Factor de Crecimiento Transformador beta1/metabolismo , Trofoblastos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...