Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 813849, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250930

RESUMEN

There is a current need for enhancing our insight in the effects of antimicrobial treatment on the composition of human microbiota. Also, the spontaneous restoration of the microbiota after antimicrobial treatment requires better understanding. This is best addressed in well-defined animal models. We here present a model in which immune-competent or neutropenic mice were administered piperacillin-tazobactam (TZP) according to human treatment schedules. Before, during and after the TZP treatment, fecal specimens were longitudinally collected at established intervals over several weeks. Gut microbial taxonomic distribution and abundance were assessed through culture and molecular means during all periods. Non-targeted metabolomics analyses of stool samples using Quadrupole Time of Flight mass spectrometry (QTOF MS) were also applied to determine if a metabolic fingerprint correlated with antibiotic use, immune status, and microbial abundance. TZP treatment led to a 5-10-fold decrease in bacterial fecal viability counts which were not fully restored during post-antibiotic follow up. Two distinct, relatively uniform and reproducible restoration scenarios of microbiota changes were seen in post TZP-treatment mice. Post-antibiotic flora could consist of predominantly Firmicutes or, alternatively, a more diverse mix of taxa. In general, the pre-treatment microbial communities were not fully restored within the screening periods applied. A new species, closely related to Eubacterium siraeum, Mageeibacillus indolicus, and Saccharofermentans acetigenes, became predominant post-treatment in a significant proportion of mice, identified by 16S rRNA gene sequencing. Principal component analysis of QTOF MS of mouse feces successfully distinguished treated from non-treated mice as well as immunocompetent from neutropenic mice. We observe dynamic but distinct and reproducible responses in the mouse gut microbiota during and after TZP treatment and propose the current murine model as a useful tool for defining the more general post-antibiotic effects in the gastro-intestinal ecosystem where humanized antibiotic dosing may ultimately facilitate extrapolation to humans.

2.
Eur J Hum Genet ; 19(10): 1074-81, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21654732

RESUMEN

Linkage testing using Affymetrix 6.0 SNP Arrays mapped the disease locus in TCD-G, an Irish family with autosomal dominant retinitis pigmentosa (adRP), to an 8.8 Mb region on 1p31. Of 50 known genes in the region, 11 candidates, including RPE65 and PDE4B, were sequenced using di-deoxy capillary electrophoresis. Simultaneously, a subset of family members was analyzed using Agilent SureSelect All Exome capture, followed by sequencing on an Illumina GAIIx platform. Candidate gene and exome sequencing resulted in the identification of an Asp477Gly mutation in exon 13 of the RPE65 gene tracking with the disease in TCD-G. All coding exons of genes not sequenced to sufficient depth by next generation sequencing were sequenced by di-deoxy sequencing. No other potential disease-causing variants were found to segregate with disease in TCD-G. The Asp477Gly mutation was not present in Irish controls, but was found in a second Irish family provisionally diagnosed with choroideremia, bringing the combined maximum two-point LOD score to 5.3. Mutations in RPE65 are a known cause of recessive Leber congenital amaurosis (LCA) and recessive RP, but no dominant mutations have been reported. Protein modeling suggests that the Asp477Gly mutation may destabilize protein folding, and mutant RPE65 protein migrates marginally faster on SDS-PAGE, compared with wild type. Gene therapy for LCA patients with RPE65 mutations has shown great promise, raising the possibility of related therapies for dominant-acting mutations in this gene.


Asunto(s)
Proteínas Portadoras/genética , Coroideremia/genética , Proteínas del Ojo/genética , Genes Dominantes , Mutación , Retinitis Pigmentosa/genética , Análisis de Secuencia de ADN/métodos , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Coroideremia/diagnóstico , Análisis Mutacional de ADN , Exoma , Proteínas del Ojo/química , Femenino , Ligamiento Genético , Genotipo , Células HeLa , Humanos , Irlanda , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Linaje , Polimorfismo de Nucleótido Simple , Retinitis Pigmentosa/diagnóstico , cis-trans-Isomerasas
3.
Invest Ophthalmol Vis Sci ; 52(1): 494-503, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-20861475

RESUMEN

PURPOSE: To determine whether massively parallel next-generation DNA sequencing offers rapid and efficient detection of disease-causing mutations in patients with monogenic inherited diseases. Retinitis pigmentosa (RP) is a challenging application for this technology because it is a monogenic disease in individuals and families but is highly heterogeneous in patient populations. RP has multiple patterns of inheritance, with mutations in many genes for each inheritance pattern and numerous, distinct, disease-causing mutations at each locus; further, many RP genes have not been identified yet. METHODS: Next-generation sequencing was used to identify mutations in pairs of affected individuals from 21 families with autosomal dominant RP, selected from a cohort of families without mutations in "common" RP genes. One thousand amplicons targeting 249,267 unique bases of 46 candidate genes were sequenced with the 454GS FLX Titanium (Roche Diagnostics, Indianapolis, IN) and GAIIx (Illumina/Solexa, San Diego, CA) platforms. RESULTS: An average sequence depth of 70× and 125× was obtained for the 454GS FLX and GAIIx platforms, respectively. More than 9000 sequence variants were identified and analyzed, to assess the likelihood of pathogenicity. One hundred twelve of these were selected as likely candidates and tested for segregation with traditional di-deoxy capillary electrophoresis sequencing of additional family members and control subjects. Five disease-causing mutations (24%) were identified in the 21 families. CONCLUSION: This project demonstrates that next-generation sequencing is an effective approach for detecting novel, rare mutations causing heterogeneous monogenic disorders such as RP. With the addition of this technology, disease-causing mutations can now be identified in 65% of autosomal dominant RP cases.


Asunto(s)
Análisis Mutacional de ADN , Mutación , Retinitis Pigmentosa/genética , Análisis de Secuencia de ADN , Femenino , Genes Dominantes , Genes Ligados a X , Humanos , Masculino , Linaje , Reacción en Cadena de la Polimerasa
4.
Genome Res ; 15(2): 292-301, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15687293

RESUMEN

Pooled genomic indexing (PGI) is a method for mapping collections of bacterial artificial chromosome (BAC) clones between species by using a combination of clone pooling and DNA sequencing. PGI has been used to map a total of 3858 BAC clones covering approximately 24% of the rhesus macaque (Macaca mulatta) genome onto 4178 homologous loci in the human genome. A number of intrachromosomal rearrangements were detected by mapping multiple segments within the individual rhesus BACs onto multiple disjoined loci in the human genome. Transversal pooling designs involving shuffled BAC arrays were employed for robust mapping even with modest DNA sequence read coverage. A further innovation, short-tag pooled genomic indexing (ST-PGI), was also introduced to further improve the economy of mapping by sequencing multiple, short, mapable tags within a single sequencing reaction.


Asunto(s)
Genoma , Macaca mulatta/genética , Animales , Aberraciones Cromosómicas , Cromosomas Artificiales Bacterianos/genética , Mapeo Contig/métodos , ADN/genética , Marcadores Genéticos/genética , Genoma Humano , Humanos , Alineación de Secuencia/métodos , Análisis de Secuencia de ADN/métodos
5.
Nature ; 428(6982): 493-521, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15057822

RESUMEN

The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.


Asunto(s)
Evolución Molecular , Genoma , Genómica , Ratas Endogámicas BN/genética , Animales , Composición de Base , Centrómero/genética , Cromosomas de los Mamíferos/genética , Islas de CpG/genética , Elementos Transponibles de ADN/genética , ADN Mitocondrial/genética , Duplicación de Gen , Humanos , Intrones/genética , Masculino , Ratones , Modelos Moleculares , Mutagénesis , Polimorfismo de Nucleótido Simple/genética , Sitios de Empalme de ARN/genética , ARN no Traducido/genética , Ratas , Secuencias Reguladoras de Ácidos Nucleicos/genética , Retroelementos/genética , Análisis de Secuencia de ADN , Telómero/genética
6.
Genome Biol ; 3(12): RESEARCH0079, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12537568

RESUMEN

BACKGROUND: The Drosophila melanogaster genome was the first metazoan genome to have been sequenced by the whole-genome shotgun (WGS) method. Two issues relating to this achievement were widely debated in the genomics community: how correct is the sequence with respect to base-pair (bp) accuracy and frequency of assembly errors? And, how difficult is it to bring a WGS sequence to the accepted standard for finished sequence? We are now in a position to answer these questions. RESULTS: Our finishing process was designed to close gaps, improve sequence quality and validate the assembly. Sequence traces derived from the WGS and draft sequencing of individual bacterial artificial chromosomes (BACs) were assembled into BAC-sized segments. These segments were brought to high quality, and then joined to constitute the sequence of each chromosome arm. Overall assembly was verified by comparison to a physical map of fingerprinted BAC clones. In the current version of the 116.9 Mb euchromatic genome, called Release 3, the six euchromatic chromosome arms are represented by 13 scaffolds with a total of 37 sequence gaps. We compared Release 3 to Release 2; in autosomal regions of unique sequence, the error rate of Release 2 was one in 20,000 bp. CONCLUSIONS: The WGS strategy can efficiently produce a high-quality sequence of a metazoan genome while generating the reagents required for sequence finishing. However, the initial method of repeat assembly was flawed. The sequence we report here, Release 3, is a reliable resource for molecular genetic experimentation and computational analysis.


Asunto(s)
Drosophila melanogaster/genética , Eucromatina/genética , Genoma , Análisis de Secuencia de ADN/métodos , Animales , Mapeo Físico de Cromosoma/métodos , Proyectos de Investigación , Cromosoma X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA