Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Restor Neurol Neurosci ; 28(3): 293-309, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20479525

RESUMEN

PURPOSE: The therapeutic potential of glial cell line-derived neurotrophic factor (GDNF) gene delivery was examined in a rodent model of traumatic brain injury (TBI), the controlled cortical impact (CCI). METHODS: An adenoviral vector harboring human GDNF (AdGDNF) or green fluorescent protein (AdGFP) was injected unilaterally into the forelimb sensorimotor cortex (FL-SMC) of the rat one week prior to a unilateral CCI. Tests of forelimb function and asymmetry were administered for 2 weeks post-injury. At 2 weeks post-injury, animals were sacrificed and contusion size, neuronal survival, neurodegeneration, and virally-mediated GDNF and GFP protein expression were measured. RESULTS: Rats injected with AdGDNF had significantly smaller contusions, more surviving neurons, and less neurodegeneration than AdGFP injected and uninjected injured animals. GDNF gene delivery also resulted in significantly faster recovery of forelimb coordination and a smaller initial preference for the uninjured forelimb during exploration of the walls of a platform. However, overall recovery of symmetrical forelimb use was not achieved. CONCLUSIONS: The discrepancy between neural protection and behavioral recovery suggests that while GDNF gene delivery provided a high degree of protection of damaged cortical neurons in this model of TBI, it may not have fully protected their terminals and synaptic functioning, resulting in only mild protection against behavioral deficits.


Asunto(s)
Lesiones Encefálicas/terapia , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Factor Neurotrófico Derivado de la Línea Celular Glial/administración & dosificación , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Fármacos Neuroprotectores/administración & dosificación , Adenoviridae/genética , Animales , Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Modelos Animales de Enfermedad , Vectores Genéticos/administración & dosificación , Cojera Animal/etiología , Cojera Animal/fisiopatología , Cojera Animal/terapia , Masculino , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Degeneración Nerviosa/terapia , Fármacos Neuroprotectores/metabolismo , Ratas , Ratas Endogámicas F344 , Recuperación de la Función/genética
2.
Eur J Neurosci ; 31(3): 478-90, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20105237

RESUMEN

Dopamine deficiency associated with Parkinson's disease (PD) results in numerous changes in striatal transmitter function and neuron morphology. Specifically, there is marked atrophy of dendrites and dendritic spines on striatal medium spiny neurons (MSN), primary targets of inputs from nigral dopamine and cortical glutamate neurons, in advanced PD and rodent models of severe dopamine depletion. Dendritic spine loss occurs via dysregulation of intraspine Cav1.3 L-type Ca(2+)channels and can be prevented, in animal models, by administration of the calcium channel antagonist, nimodipine. The impact of MSN dendritic spine loss in the parkinsonian striatum on dopamine neuron graft therapy remains unexamined. Using unilaterally parkinsonian Sprague-Dawley rats, we tested the hypothesis that MSN dendritic spine preservation through administration of nimodipine would result in improved therapeutic benefit and diminished graft-induced behavioral abnormalities in rats grafted with embryonic ventral midbrain cells. Analysis of rotational asymmetry and spontaneous forelimb use in the cylinder task found no significant effect of dendritic spine preservation in grafted rats. However, analyses of vibrissae-induced forelimb use, levodopa-induced dyskinesias and graft-induced dyskinesias showed significant improvement in rats with dopamine grafts associated with preserved striatal dendritic spine density. Nimodipine treatment in this model did not impact dopamine graft survival but allowed for increased graft reinnervation of striatum. Taken together, these results demonstrate that even with grafting suboptimal numbers of cells, maintaining normal spine density on target MSNs results in overall superior behavioral efficacy of dopamine grafts.


Asunto(s)
Trasplante de Células , Espinas Dendríticas/metabolismo , Dopamina/metabolismo , Discinesias/fisiopatología , Neuronas/metabolismo , Enfermedad de Parkinson , Animales , Antiparkinsonianos/farmacología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/patología , Espinas Dendríticas/ultraestructura , Modelos Animales de Enfermedad , Discinesias/tratamiento farmacológico , Femenino , Levodopa/farmacología , Masculino , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Nimodipina/farmacología , Nimodipina/uso terapéutico , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Embarazo , Ratas , Ratas Sprague-Dawley , Vibrisas/metabolismo
3.
Prog Brain Res ; 175: 201-16, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19660658

RESUMEN

Parkinson's disease (PD) is a progressive, neurodegenerative disorder for which there is currently no effective neuroprotective therapy. Patients are typically treated with a combination of drug therapies and/or receive deep brain stimulation to combat behavioral symptoms. The ideal candidate therapy would be the one which prevents neurodegeneration in the brain, thereby halting the progression of debilitating disease symptoms. Neurotrophic factors have been in the forefront of PD research, and clinical trials have been initiated using members of the GDNF family of ligands (GFLs). GFLs have been shown to be trophic to ventral mesencephalic cells, thereby making them good candidates for PD research. This paper examines the use of GDNF and neurturin, two members of the GFL, in both animal models of PD and clinical trials.


Asunto(s)
Terapia Genética/métodos , Factores de Crecimiento Nervioso/uso terapéutico , Enfermedad de Parkinson/terapia , Animales , Ensayos Clínicos como Asunto , Humanos
4.
J Comp Neurol ; 515(1): 15-30, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19399877

RESUMEN

Clinical trials of neural grafting for Parkinson's disease (PD) have produced variable, but overall disappointing, results. One particular disappointment has been the development of aberrant motor complications following dopamine (DA) neuron grafting. Despite a lack of consistent benefit, the utility of dopamine neuron replacement remains supported by clinical and basic data. In a continued effort to elucidate factors that might improve this therapy, we used a parkinsonian rat model to examine whether pregraft chronic levodopa affected graft efficacy and/or graft-induced dyskinesia (GID) induction. Indeed, all grafted PD patients to date have had a pregraft history of long-term levodopa. It is well established that long-term levodopa results in a plethora of long-lasting neurochemical alterations and genomic changes indicative of altered structural and synaptic plasticity. Thus, therapeutic dopamine terminal replacement in a striatal environment complicated by such changes could be expected to lead to abnormal or inappropriate connections between graft and host brain and to contribute to suboptimal efficacy and/or postgraft GID behaviors. To investigate the effect of pregraft levodopa, one group of parkinsonian rats received levodopa for 4 weeks prior to grafting. A second levodopa-naïve group was grafted, and the grafts were allowed to mature for 9 weeks prior to introducing chronic levodopa. We report here that, in parkinsonian rats, preexposure to chronic levodopa significantly reduces behavioral and neurochemical efficacy of embryonic dopamine grafts. Furthermore, dopamine terminal replacement prior to introduction of chronic levodopa is highly effective at preventing development of levodopa-induced dyskinesias, and GID-like behaviors occur regardless of pregraft levodopa status.


Asunto(s)
Trasplante de Tejido Encefálico/métodos , Encéfalo/efectos de los fármacos , Discinesia Inducida por Medicamentos/fisiopatología , Levodopa/efectos adversos , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/cirugía , Animales , Antiparkinsonianos/efectos adversos , Encéfalo/metabolismo , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Dopamina/deficiencia , Esquema de Medicación , Supervivencia de Injerto/efectos de los fármacos , Supervivencia de Injerto/fisiología , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/trasplante , Ratas , Ratas Endogámicas F344 , Resultado del Tratamiento
5.
Brain Res ; 1053(1-2): 38-53, 2005 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-16051202

RESUMEN

Neurogenesis following neural degeneration has been demonstrated in many models of disease and injury. The present study further examines the early proliferative and migratory response of the brain to a controlled cortical impact (CCI) model of traumatic brain injury. The CCI was centered over the forelimb sensorimotor cortex, unilaterally, in the adult mouse. To examine proliferation, bromo-deoxyuridine (BrdU) was injected i.p. immediately post-injury and on post-injury days 1, 2, and 3. To assess migration, we labeled SVZ cells with inert latex microspheres immediately post-injury. By combining microsphere labeling with BrdU, we determined if migrating cells had gone through the S-phase of the cell cycle after the lesion. In addition, we used a marker of neurogenesis and migration, doublecortin, to further characterize the response of the SVZ to the injury. Lastly, we determined whether subregions of the SVZ respond differentially to injury. The current study demonstrates that 3 days following CCI cellular proliferation is seen around the cortex, in the SVZ, corpus callosum, and subcortical areas anatomically connected to, but not directly damaged by the impact. It delineates that an increase in proliferation occurs in the dorsal-most aspect of the ipsilateral SVZ following impact. Lastly, it demonstrates that proliferating cells migrate from the SVZ to cortical and subcortical structures affected by the injury and that some of these cells are migrating neuroblasts.


Asunto(s)
Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Movimiento Celular/fisiología , Proliferación Celular , Corteza Cerebral/patología , Animales , Bromodesoxiuridina/metabolismo , Recuento de Células/métodos , Corteza Cerebral/lesiones , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Lateralidad Funcional/fisiología , Ventrículos Laterales/efectos de los fármacos , Ventrículos Laterales/metabolismo , Ventrículos Laterales/patología , Masculino , Ratones , Microesferas , Proteínas Asociadas a Microtúbulos/metabolismo , Neuropéptidos/metabolismo , Factores de Tiempo , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA