Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(1): 016602, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38242664

RESUMEN

A (2+1)D topologically ordered phase may or may not have a gappable edge, even if its chiral central charge c_{-} is vanishing. Recently, it was discovered that a quantity regarded as a "higher" version of chiral central charge gives a further obstruction beyond c_{-} to gapping out the edge. In this Letter, we show that the higher central charges can be characterized by the expectation value of the partial rotation operator acting on the wave function of the topologically ordered state. This allows us to extract the higher central charge from a single wave function, which can be evaluated on a quantum computer. Our characterization of the higher central charge is analytically derived from the modular properties of edge conformal field theory, as well as the numerical results with the ν=1/2 bosonic Laughlin state and the non-Abelian gapped phase of the Kitaev honeycomb model, which corresponds to U(1)_{2} and Ising topological order, respectively. The Letter establishes a numerical method to obtain a set of obstructions to the gappable edge of (2+1)D bosonic topological order beyond c_{-}, which enables us to completely determine if a (2+1)D bosonic Abelian topological order has a gappable edge or not. We also point out that the expectation values of the partial rotation on a single wave function put a constraint on the low-energy spectrum of the bulk-boundary system of (2+1)D bosonic topological order, reminiscent of the Lieb-Schultz-Mattis-type theorems.

2.
Nature ; 620(7974): 525-532, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37587297

RESUMEN

Interactions among electrons create novel many-body quantum phases of matter with wavefunctions that reflect electronic correlation effects, broken symmetries and collective excitations. Many quantum phases have been discovered in magic-angle twisted bilayer graphene (MATBG), including correlated insulating1, unconventional superconducting2-5 and magnetic topological6-9 phases. The lack of microscopic information10,11 of possible broken symmetries has hampered our understanding of these phases12-17. Here we use high-resolution scanning tunnelling microscopy to study the wavefunctions of the correlated phases in MATBG. The squares of the wavefunctions of gapped phases, including those of the correlated insulating, pseudogap and superconducting phases, show distinct broken-symmetry patterns with a √3 × âˆš3 super-periodicity on the graphene atomic lattice that has a complex spatial dependence on the moiré scale. We introduce a symmetry-based analysis using a set of complex-valued local order parameters, which show intricate textures that distinguish the various correlated phases. We compare the observed quantum textures of the correlated insulators at fillings of ±2 electrons per moiré unit cell to those expected for proposed theoretical ground states. In typical MATBG devices, these textures closely match those of the proposed incommensurate Kekulé spiral order15, whereas in ultralow-strain samples, our data have local symmetries like those of a time-reversal symmetric intervalley coherent phase12. Moreover, the superconducting state of MATBG shows strong signatures of intervalley coherence, only distinguishable from those of the insulator with our phase-sensitive measurements.

3.
Nat Commun ; 14(1): 3595, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328471

RESUMEN

In recent years, correlated insulating states, unconventional superconductivity, and topologically non-trivial phases have all been observed in several moiré heterostructures. However, understanding of the physical mechanisms behind these phenomena is hampered by the lack of local electronic structure data. Here, we use scanning tunnelling microscopy and spectroscopy to demonstrate how the interplay between correlation, topology, and local atomic structure determines the behaviour of electron-doped twisted monolayer-bilayer graphene. Through gate- and magnetic field-dependent measurements, we observe local spectroscopic signatures indicating a quantum anomalous Hall insulating state with a total Chern number of ±2 at a doping level of three electrons per moiré unit cell. We show that the sign of the Chern number and associated magnetism can be electrostatically switched only over a limited range of twist angle and sample hetero-strain values. This results from a competition between the orbital magnetization of filled bulk bands and chiral edge states, which is sensitive to strain-induced distortions in the moiré superlattice.


Asunto(s)
Electrones , Grafito , Análisis Espectral , Campos Magnéticos , Microscopía de Túnel de Rastreo
4.
Phys Rev Lett ; 129(14): 147001, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36240422

RESUMEN

A growing body of experimental work suggests that magic angle twisted bilayer graphene exhibits a "cascade" of spontaneous symmetry-breaking transitions, sparking interest in the potential relationship between symmetry breaking and superconductivity. However, it has proven difficult to find experimental probes which can unambiguously identify the nature of the symmetry breaking. Here, we show how atomically resolved scanning tunneling microscopy can be used as a fingerprint of symmetry-breaking order. By analyzing the pattern of sublattice polarization and "Kekulé" distortions in small magnetic fields, order parameters for each of the most competitive symmetry-breaking states can be identified. In particular, we show that the "Kramers intervalley coherent state," which theoretical work predicts to be the ground state at even integer fillings, shows a Kekulé distortion which emerges only in a magnetic field.

5.
Phys Rev Lett ; 127(2): 027601, 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34296891

RESUMEN

We investigate the effect of uniaxial heterostrain on the interacting phase diagram of magic-angle twisted bilayer graphene. Using both self-consistent Hartree-Fock and density-matrix renormalization group calculations, we find that small strain values (ε∼0.1%-0.2%) drive a zero-temperature phase transition between the symmetry-broken "Kramers intervalley-coherent" insulator and a nematic semimetal. The critical strain lies within the range of experimentally observed strain values, and we therefore predict that strain is at least partly responsible for the sample-dependent experimental observations.

6.
Phys Rev Lett ; 126(12): 120501, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33834807

RESUMEN

Motivated by conjectures in holography relating the entanglement of purification and reflected entropy to the entanglement wedge cross section, we introduce two related non-negative measures of tripartite entanglement g and h. We prove structure theorems which show that states with nonzero g or h have nontrivial tripartite entanglement. We then establish that in one dimension these tripartite entanglement measures are universal quantities that depend only on the emergent low-energy theory. For a gapped system, we argue that either g≠0 and h=0 or g=h=0, depending on whether the ground state has long-range order. For a critical system, we develop a numerical algorithm for computing g and h from a lattice model. We compute g and h for various CFTs and show that h depends only on the central charge whereas g depends on the whole operator content.

7.
Analyst ; 139(23): 6100-3, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-25325396

RESUMEN

Human plasma proteins and even structurally similar homologous albumins were fingerprinted and discriminated by a sensor array consisting of a polyion complex library with artificial differentiation constructed by facile tuning of PEGylated polyamine functionalities.


Asunto(s)
Biblioteca de Péptidos , Mapeo Peptídico/métodos , Poliaminas/química , Polietilenglicoles/química , Humanos
8.
Chemistry ; 20(23): 6871-4, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24782420

RESUMEN

We investigated which factors govern the critical steps of cation exchange in metal-organic frameworks by studying the effect of various solvents on the insertion of Ni(2+) into MOF-5 and Co(2+) into MFU-4l. After plotting the extent of cation insertion versus different solvent parameters, trends emerge that offer insight into the exchange processes for both systems. This approach establishes a method for understanding critical aspects of cation exchange in different MOFs and other materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA