Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Circ Res ; 132(3): 323-338, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36597873

RESUMEN

BACKGROUND: Coronary artery disease (CAD) is the leading cause of death worldwide. Recent meta-analyses of genome-wide association studies have identified over 175 loci associated with CAD. The majority of these loci are in noncoding regions and are predicted to regulate gene expression. Given that vascular smooth muscle cells (SMCs) play critical roles in the development and progression of CAD, we aimed to identify the subset of the CAD loci associated with the regulation of transcription in distinct SMC phenotypes. METHODS: We measured gene expression in SMCs isolated from the ascending aortas of 151 heart transplant donors of various genetic ancestries in quiescent or proliferative conditions and calculated the association of their expression and splicing with ~6.3 million imputed single-nucleotide polymorphism markers across the genome. RESULTS: We identified 4910 expression and 4412 splicing quantitative trait loci (sQTLs) representing regions of the genome associated with transcript abundance and splicing. A total of 3660 expression quantitative trait loci (eQTLs) had not been observed in the publicly available Genotype-Tissue Expression dataset. Further, 29 and 880 eQTLs were SMC-specific and sex-biased, respectively. We made these results available for public query on a user-friendly website. To identify the effector transcript(s) regulated by CAD loci, we used 4 distinct colocalization approaches. We identified 84 eQTL and 164 sQTL that colocalized with CAD loci, highlighting the importance of genetic regulation of mRNA splicing as a molecular mechanism for CAD genetic risk. Notably, 20% and 35% of the eQTLs were unique to quiescent or proliferative SMCs, respectively. One CAD locus colocalized with a sex-specific eQTL (TERF2IP), and another locus colocalized with SMC-specific eQTL (ALKBH8). The most significantly associated CAD locus, 9p21, was an sQTL for the long noncoding RNA CDKN2B-AS1, also known as ANRIL, in proliferative SMCs. CONCLUSIONS: Collectively, our results provide evidence for the molecular mechanisms of genetic susceptibility to CAD in distinct SMC phenotypes.


Asunto(s)
Enfermedad de la Arteria Coronaria , Masculino , Femenino , Humanos , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Regulación de la Expresión Génica , Sitios de Carácter Cuantitativo , Predisposición Genética a la Enfermedad , Expresión Génica , Polimorfismo de Nucleótido Simple , Homólogo 8 de AlkB ARNt Metiltransferasa/genética , Homólogo 8 de AlkB ARNt Metiltransferasa/metabolismo
2.
Genome Res ; 30(10): 1379-1392, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32967914

RESUMEN

Sex differences in adipose tissue distribution and function are associated with sex differences in cardiometabolic disease. While many studies have revealed sex differences in adipocyte cell signaling and physiology, there is a relative dearth of information regarding sex differences in transcript abundance and regulation. We investigated sex differences in subcutaneous adipose tissue transcriptional regulation using omic-scale data from ∼3000 geographically and ethnically diverse human samples. We identified 162 genes with robust sex differences in expression. Differentially expressed genes were implicated in oxidative phosphorylation and adipogenesis. We further determined that sex differences in gene expression levels could be related to sex differences in the genetics of gene expression regulation. Our analyses revealed sex-specific genetic associations, and this finding was replicated in a study of 98 inbred mouse strains. The genes under genetic regulation in human and mouse were enriched for oxidative phosphorylation and adipogenesis. Enrichment analysis showed that the associated genetic loci resided within binding motifs for adipogenic transcription factors (e.g., PPARG and EGR1). We demonstrated that sex differences in gene expression could be influenced by sex differences in genetic regulation for six genes (e.g., FADS1 and MAP1B). These genes exhibited dynamic expression patterns during adipogenesis and robust expression in mature human adipocytes. Our results support a role for adipogenesis-related genes in subcutaneous adipose tissue sex differences in the genetic and environmental regulation of gene expression.


Asunto(s)
Adipogénesis/genética , Tejido Adiposo/metabolismo , Regulación de la Expresión Génica , Caracteres Sexuales , delta-5 Desaturasa de Ácido Graso , Femenino , Genotipo , Humanos , Masculino , Fosforilación Oxidativa , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...