Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 620, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739444

RESUMEN

SARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic. Its high pathogenicity is due to SARS-CoV-2 spike protein (S protein) contacting host-cell receptors. A critical hallmark of COVID-19 is the occurrence of coagulopathies. Here, we report the direct observation of the interactions between S protein and platelets. Live imaging shows that the S protein triggers platelets to deform dynamically, in some cases, leading to their irreversible activation. Cellular cryo-electron tomography reveals dense decorations of S protein on the platelet surface, inducing filopodia formation. Hypothesizing that S protein binds to filopodia-inducing integrin receptors, we tested the binding to RGD motif-recognizing platelet integrins and find that S protein recognizes integrin αvß3. Our results infer that the stochastic activation of platelets is due to weak interactions of S protein with integrin, which can attribute to the pathogenesis of COVID-19 and the occurrence of rare but severe coagulopathies.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Plaquetas/metabolismo , Pandemias
2.
bioRxiv ; 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36451880

RESUMEN

SARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic. Its high pathogenicity is due to SARS-CoV-2 spike protein (S protein) contacting host-cell receptors. A critical hallmark of COVID-19 is the occurrence of coagulopathies. Here, we report the direct observation of the interactions between S protein and platelets. Live imaging showed that the S protein triggers platelets to deform dynamically, in some cases, leading to their irreversible activation. Strikingly, cellular cryo-electron tomography revealed dense decorations of S protein on the platelet surface, inducing filopodia formation. Hypothesizing that S protein binds to filopodia-inducing integrin receptors, we tested the binding to RGD motif-recognizing platelet integrins and found that S protein recognizes integrin α v ß 3 . Our results infer that the stochastic activation of platelets is due to weak interactions of S protein with integrin, which can attribute to the pathogenesis of COVID-19 and the occurrence of rare but severe coagulopathies.

3.
Sci Adv ; 8(26): eabn3299, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35767606

RESUMEN

The ParABS system is essential for prokaryotic chromosome segregation. After loading at parS on the genome, ParB (partition protein B) proteins rapidly redistribute to distances of ~15 kilobases from the loading site. It has remained puzzling how this large-distance spreading can occur along DNA loaded with hundreds of proteins. Using in vitro single-molecule fluorescence imaging, we show that ParB from Bacillus subtilis can load onto DNA distantly of parS, as loaded ParB molecules themselves are found to be able to recruit additional ParB proteins from bulk. Notably, this recruitment can occur in cis but also in trans, where, at low tensions within the DNA, newly recruited ParB can bypass roadblocks as it gets loaded to spatially proximal but genomically distant DNA regions. The data are supported by molecular dynamics simulations, which show that cooperative ParB-ParB recruitment can enhance spreading. ParS-independent recruitment explains how ParB can cover substantial genomic distance during chromosome segregation, which is vital for the bacterial cell cycle.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Segregación Cromosómica , ADN/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Unión Proteica
4.
Sci Adv ; 7(41): eabj2854, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34613769

RESUMEN

Three-component ParABS systems are widely distributed factors for plasmid partitioning and chromosome segregation in bacteria. ParB acts as adaptor protein between the 16­base pair centromeric parS DNA sequences and the DNA segregation proteins ParA and Smc (structural maintenance of chromosomes). Upon cytidine triphosphate (CTP) and parS DNA binding, ParB dimers form DNA clamps that spread onto parS-flanking DNA by sliding, thus assembling the so-called partition complex. We show here that CTP hydrolysis is essential for efficient chromosome segregation by ParABS but largely dispensable for Smc recruitment. Our results suggest that CTP hydrolysis contributes to partition complex assembly via two mechanisms. It promotes ParB unloading from DNA to limit the extent of ParB spreading, and it recycles off-target ParB clamps to allow for parS retargeting, together superconcentrating ParB near parS. We also propose a model for clamp closure involving a steric clash when binding ParB protomers to opposing parS half sites.

5.
Nat Microbiol ; 6(9): 1175-1187, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34373624

RESUMEN

Most bacteria replicate and segregate their DNA concomitantly while growing, before cell division takes place. How bacteria synchronize these different cell cycle events to ensure faithful chromosome inheritance by daughter cells is poorly understood. Here, we identify Cell Cycle Regulator protein interacting with FtsZ (CcrZ) as a conserved and essential protein in pneumococci and related Firmicutes such as Bacillus subtilis and Staphylococcus aureus. CcrZ couples cell division with DNA replication by controlling the activity of the master initiator of DNA replication, DnaA. The absence of CcrZ causes mis-timed and reduced initiation of DNA replication, which subsequently results in aberrant cell division. We show that CcrZ from Streptococcus pneumoniae interacts directly with the cytoskeleton protein FtsZ, which places CcrZ in the middle of the newborn cell where the DnaA-bound origin is positioned. This work uncovers a mechanism for control of the bacterial cell cycle in which CcrZ controls DnaA activity to ensure that the chromosome is replicated at the right time during the cell cycle.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ciclo Celular , Proteínas del Citoesqueleto/metabolismo , Replicación del ADN , Streptococcus pneumoniae/citología , Streptococcus pneumoniae/metabolismo , Bacillus subtilis/citología , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas del Citoesqueleto/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Unión Proteica , Streptococcus pneumoniae/genética
6.
EMBO J ; 40(15): e107807, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34191293

RESUMEN

Eukaryotic cells employ three SMC (structural maintenance of chromosomes) complexes to control DNA folding and topology. The Smc5/6 complex plays roles in DNA repair and in preventing the accumulation of deleterious DNA junctions. To elucidate how specific features of Smc5/6 govern these functions, we reconstituted the yeast holo-complex. We found that the Nse5/6 sub-complex strongly inhibited the Smc5/6 ATPase by preventing productive ATP binding. This inhibition was relieved by plasmid DNA binding but not by short linear DNA, while opposing effects were observed without Nse5/6. We uncovered two binding sites for Nse5/6 on Smc5/6, based on an Nse5/6 crystal structure and cross-linking mass spectrometry data. One binding site is located at the Smc5/6 arms and one at the heads, the latter likely exerting inhibitory effects on ATP hydrolysis. Cysteine cross-linking demonstrated that the interaction with Nse5/6 anchored the ATPase domains in a non-productive state, which was destabilized by ATP and DNA. Under similar conditions, the Nse4/3/1 module detached from the ATPase. Altogether, we show how DNA substrate selection is modulated by direct inhibition of the Smc5/6 ATPase by Nse5/6.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN de Hongos/metabolismo , Hidrólisis , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Conformación Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
Cell Rep ; 35(4): 109051, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33910021

RESUMEN

Multi-subunit SMC ATPases control chromosome superstructure apparently by catalyzing a DNA-loop-extrusion reaction. SMC proteins harbor an ABC-type ATPase "head" and a "hinge" dimerization domain connected by a coiled coil "arm." Two arms in a SMC dimer can co-align, thereby forming a rod-shaped particle. Upon ATP binding, SMC heads engage, and arms are thought to separate. Here, we study the shape of Bacillus subtilis Smc-ScpAB by electron-spin resonance spectroscopy. Arm separation is readily detected proximal to the heads in the absence of ligands, and separation near the hinge largely depends on ATP and DNA. Artificial blockage of arm opening eliminates DNA stimulation of ATP hydrolysis but does not prevent basal ATPase activity. We report an arm contact as being important for controlling the transformations. Point mutations at this arm interface eliminated Smc function. We propose that partially open, intermediary conformations provide directionality to SMC DNA translocation by (un)binding suitable DNA substrates.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Células Procariotas/metabolismo , Humanos
8.
Proteins ; 89(2): 251-255, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32875643

RESUMEN

The Rad50-Mre11 nuclease complex plays a vital role in DNA repair in all domains of life. It recognizes and processes DNA double-strand breaks. Rad50 proteins fold into an extended structure with a 20 to 60 nm long coiled coil connecting a globular ABC ATPase domain with a zinc hook dimerization domain. A published structure of an archaeal Rad50 zinc hook shows coiled coils pointing away from each other. Here we present the crystal structure of an alternate conformation displaying co-aligned coiled coils. Archaeal Rad50 may thus switch between rod-shaped and ring-like conformations as recently proposed for a bacterial homolog.


Asunto(s)
Proteínas Arqueales/química , Reparación del ADN , ADN de Archaea/química , Endodesoxirribonucleasas/química , Exodesoxirribonucleasas/química , Pyrococcus furiosus/genética , Zinc/química , Secuencias de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Cationes Bivalentes , Clonación Molecular , Cristalografía por Rayos X , ADN de Archaea/genética , ADN de Archaea/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Pyrococcus furiosus/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína , Zinc/metabolismo
9.
PLoS Genet ; 16(8): e1008569, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32810145

RESUMEN

Correct bioriented attachment of sister chromatids to the mitotic spindle is essential for chromosome segregation. In budding yeast, the conserved protein shugoshin (Sgo1) contributes to biorientation by recruiting the protein phosphatase PP2A-Rts1 and the condensin complex to centromeres. Using peptide prints, we identified a Serine-Rich Motif (SRM) of Sgo1 that mediates the interaction with condensin and is essential for centromeric condensin recruitment and the establishment of biorientation. We show that the interaction is regulated via phosphorylation within the SRM and we determined the phospho-sites using mass spectrometry. Analysis of the phosphomimic and phosphoresistant mutants revealed that SRM phosphorylation disrupts the shugoshin-condensin interaction. We present evidence that Mps1, a central kinase in the spindle assembly checkpoint, directly phosphorylates Sgo1 within the SRM to regulate the interaction with condensin and thereby condensin localization to centromeres. Our findings identify novel mechanisms that control shugoshin activity at the centromere in budding yeast.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Centrómero/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación , Unión Proteica , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
10.
Science ; 366(6469): 1129-1133, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31649139

RESUMEN

ParABS systems facilitate chromosome segregation and plasmid partitioning in bacteria and archaea. ParB protein binds centromeric parS DNA sequences and spreads to flanking DNA. We show that ParB is an enzyme that hydrolyzes cytidine triphosphate (CTP) to cytidine diphosphate (CDP). parS DNA stimulates cooperative CTP binding by ParB and CTP hydrolysis. A nucleotide cocrystal structure elucidates the catalytic center of the dimerization-dependent ParB CTPase. Single-molecule imaging and biochemical assays recapitulate features of ParB spreading from parS in the presence but not absence of CTP. These findings suggest that centromeres assemble by self-loading of ParB DNA sliding clamps at parS ParB CTPase is not related to known nucleotide hydrolases and might be a promising target for developing new classes of antibiotics.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Centrómero/enzimología , Citidina Trifosfato/química , Pirofosfatasas/química , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Secuencias Hélice-Giro-Hélice , Hidrólisis , Secuencias Invertidas Repetidas , Dominios Proteicos , Multimerización de Proteína , Pirofosfatasas/genética
11.
Mol Cell ; 57(2): 290-303, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25557547

RESUMEN

SMC condensin complexes are central modulators of chromosome superstructure in all branches of life. Their SMC subunits form a long intramolecular coiled coil, which connects a constitutive "hinge" dimerization domain with an ATP-regulated "head" dimerization module. Here, we address the structural arrangement of the long coiled coils in SMC complexes. We unequivocally show that prokaryotic Smc-ScpAB, eukaryotic condensin, and possibly also cohesin form rod-like structures, with their coiled coils being closely juxtaposed and accurately anchored to the hinge. Upon ATP-induced binding of DNA to the hinge, however, Smc switches to a more open configuration. Our data suggest that a long-distance structural transition is transmitted from the Smc head domains to regulate Smc-ScpAB's association with DNA. These findings uncover a conserved architectural theme in SMC complexes, provide a mechanistic basis for Smc's dynamic engagement with chromosomes, and offer a molecular explanation for defects in Cornelia de Lange syndrome.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Proteínas de Ciclo Celular/ultraestructura , ADN Bacteriano/química , Pyrococcus furiosus , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas de Ciclo Celular/química , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína
12.
Nat Struct Mol Biol ; 20(3): 371-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23353789

RESUMEN

Eukaryotic structural maintenance of chromosomes (SMC)-kleisin complexes form large, ring-shaped assemblies that promote accurate chromosome segregation. Their asymmetric structural core comprises SMC heterodimers that associate with both ends of a kleisin subunit. However, prokaryotic condensin Smc-ScpAB is composed of symmetric Smc homodimers associated with the kleisin ScpA in a postulated symmetrical manner. Here, we demonstrate that Smc molecules have two distinct binding sites for ScpA. The N terminus of ScpA binds the Smc coiled coil, whereas the C terminus binds the Smc ATPase domain. We show that in Bacillus subtilis cells, an Smc dimer is bridged by a single ScpAB to generate asymmetric tripartite rings analogous to eukaryotic SMC complexes. We define a molecular mechanism that ensures asymmetric assembly, and we conclude that the basic architecture of SMC-kleisin rings evolved before the emergence of eukaryotes.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Proteínas de Ciclo Celular/química , Proteínas de Unión al ADN/química , Complejos Multiproteicos/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Reactivos de Enlaces Cruzados , Cristalografía por Rayos X , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Mutación , Conformación Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Streptococcus pneumoniae/química
13.
J Mol Biol ; 425(7): 1119-26, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23353825

RESUMEN

An outer membrane protein BP26/OMP28 of Brucella, BP26, is identified as a major immunodominant antigen and widely used as a diagnostic marker and for vaccination against Brucellosis. BP26 belongs to the family of proteins that contains a SIMPL (signaling molecule that associates with the mouse pelle-like kinase) domain, whose structure and function have been unknown. Here, we present the crystal structure of BP26 revealing that 16 BP26 molecules form a novel channel-like assembly as also shown by electron microscopy analysis. Eight BP26 molecules forming a ring structure contain a hole at the center of the octamer, and another octamer interacts with each other to form a channel having a large internal cavity. BP26 is found to be structurally similar to a bacteriophage protein involved in infection, implicating that BP26 might function during Brucella infection. In addition, the BP26 structure suggests that the protein functions as a multimeric channel-like form and provides a canonical model for the SIMPL domains.


Asunto(s)
Proteínas Bacterianas/química , Brucella/metabolismo , Canales Iónicos/química , Proteínas de la Membrana/química , Secuencia de Aminoácidos , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Antígenos Bacterianos/ultraestructura , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , Brucella/genética , Brucella/inmunología , Cristalografía por Rayos X , Canales Iónicos/genética , Canales Iónicos/ultraestructura , Proteínas de la Membrana/genética , Proteínas de la Membrana/ultraestructura , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...