Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 62017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28556777

RESUMEN

Interaction between the nascent polypeptide chain and the ribosomal exit tunnel can modulate the rate of translation and induce translational arrest to regulate expression of downstream genes. The ribosomal tunnel also provides a protected environment for initial protein folding events. Here, we present a 2.9 Å cryo-electron microscopy structure of a ribosome stalled during translation of the extremely compacted VemP nascent chain. The nascent chain forms two α-helices connected by an α-turn and a loop, enabling a total of 37 amino acids to be observed within the first 50-55 Å of the exit tunnel. The structure reveals how α-helix formation directly within the peptidyltransferase center of the ribosome interferes with aminoacyl-tRNA accommodation, suggesting that during canonical translation, a major role of the exit tunnel is to prevent excessive secondary structure formation that can interfere with the peptidyltransferase activity of the ribosome.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biosíntesis de Proteínas , Estructura Secundaria de Proteína , Ribosomas/química , Ribosomas/metabolismo , Microscopía por Crioelectrón , Modelos Moleculares , Vibrio alginolyticus/metabolismo
2.
Nucleic Acids Res ; 44(13): 6471-81, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27226493

RESUMEN

Under stress conditions, such as nutrient starvation, deacylated tRNAs bound within the ribosomal A-site are recognized by the stringent factor RelA, which converts ATP and GTP/GDP to (p)ppGpp. The signaling molecules (p)ppGpp globally rewire the cellular transcriptional program and general metabolism, leading to stress adaptation. Despite the additional importance of the stringent response for regulation of bacterial virulence, antibiotic resistance and persistence, structural insight into how the ribosome and deacylated-tRNA stimulate RelA-mediated (p)ppGpp has been lacking. Here, we present a cryo-EM structure of RelA in complex with the Escherichia coli 70S ribosome with an average resolution of 3.7 Å and local resolution of 4 to >10 Å for RelA. The structure reveals that RelA adopts a unique 'open' conformation, where the C-terminal domain (CTD) is intertwined around an A/T-like tRNA within the intersubunit cavity of the ribosome and the N-terminal domain (NTD) extends into the solvent. We propose that the open conformation of RelA on the ribosome relieves the autoinhibitory effect of the CTD on the NTD, thus leading to stimulation of (p)ppGpp synthesis by RelA.


Asunto(s)
Nucleótidos de Guanina/química , Ligasas/química , ARN de Transferencia/química , Ribosomas/química , Escherichia coli/química , Escherichia coli/genética , GTP Pirofosfoquinasa/química , GTP Pirofosfoquinasa/genética , Regulación Bacteriana de la Expresión Génica , Nucleótidos de Guanina/biosíntesis , Ligasas/genética , Conformación Molecular , ARN de Transferencia/genética , Ribosomas/genética
3.
Nat Struct Mol Biol ; 22(10): 767-73, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26344568

RESUMEN

The signal recognition particle (SRP) recognizes signal sequences of nascent polypeptides and targets ribosome-nascent chain complexes to membrane translocation sites. In eukaryotes, translating ribosomes are slowed down by the Alu domain of SRP to allow efficient targeting. In prokaryotes, however, little is known about the structure and function of Alu domain-containing SRPs. Here, we report a complete molecular model of SRP from the Gram-positive bacterium Bacillus subtilis, based on cryo-EM. The SRP comprises two subunits, 6S RNA and SRP54 or Ffh, and it facilitates elongation slowdown similarly to its eukaryotic counterpart. However, protein contacts with the small ribosomal subunit observed for the mammalian Alu domain are substituted in bacteria by RNA-RNA interactions of 6S RNA with the α-sarcin-ricin loop and helices H43 and H44 of 23S rRNA. Our findings provide a structural basis for cotranslational targeting and RNA-driven elongation arrest in prokaryotes.


Asunto(s)
Elementos Alu/genética , Bacillus subtilis/genética , Modelos Moleculares , Biosíntesis de Proteínas/genética , ARN/metabolismo , Partícula de Reconocimiento de Señal/genética , Microscopía por Crioelectrón , Oligonucleótidos/genética , Unión Proteica , Biosíntesis de Proteínas/fisiología , Subunidades de Proteína/genética , Ribosomas/genética , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/metabolismo
4.
Nat Commun ; 6: 6941, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25903689

RESUMEN

Ribosomal stalling is used to regulate gene expression and can occur in a species-specific manner. Stalling during translation of the MifM leader peptide regulates expression of the downstream membrane protein biogenesis factor YidC2 (YqjG) in Bacillus subtilis, but not in Escherichia coli. In the absence of structures of Gram-positive bacterial ribosomes, a molecular basis for species-specific stalling has remained unclear. Here we present the structure of a Gram-positive B. subtilis MifM-stalled 70S ribosome at 3.5-3.9 Å, revealing a network of interactions between MifM and the ribosomal tunnel, which stabilize a non-productive conformation of the PTC that prevents aminoacyl-tRNA accommodation and thereby induces translational arrest. Complementary genetic analyses identify a single amino acid within ribosomal protein L22 that dictates the species specificity of the stalling event. Such insights expand our understanding of how the synergism between the ribosome and the nascent chain is utilized to modulate the translatome in a species-specific manner.


Asunto(s)
Bacillus subtilis , Regulación Bacteriana de la Expresión Génica , Biosíntesis de Proteínas/genética , Ribosomas/química , Proteínas Bacterianas , Cristalografía por Rayos X , Proteínas de la Membrana/genética , Conformación Molecular , Señales de Clasificación de Proteína/genética , ARN de Transferencia , Proteínas Ribosómicas
5.
Nucleic Acids Res ; 42(10): 6698-708, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24744237

RESUMEN

Instead of a classical single-stranded deoxyribonuleic acid (DNA)-binding protein (SSB), some hyperthermophilic crenarchaea harbor a non-canonical SSB termed ThermoDBP. Two related but poorly characterized groups of proteins, which share the ThermoDBP N-terminal DNA-binding domain, have a broader phylogenetic distribution and co-exist with ThermoDBPs and/or other SSBs. We have investigated the nucleic acid binding properties and crystal structures of representatives of these groups of ThermoDBP-related proteins (ThermoDBP-RPs) 1 and 2. ThermoDBP-RP 1 and 2 oligomerize by different mechanisms and only ThermoDBP-RP2 exhibits strong single-stranded DNA affinity in vitro. A crystal structure of ThermoDBP-RP2 in complex with DNA reveals how the NTD common to ThermoDBPs and ThermoDBP-RPs can contact the nucleic acid in a manner that allows a symmetric homotetrameric protein complex to bind single-stranded DNA molecules asymmetrically. While single-stranded DNA wraps around the surface or binds along channels of previously investigated SSBs, it traverses an internal, intersubunit tunnel system of a ThermoDBP-RP2 tetramer. Our results indicate that some archaea have acquired special SSBs for genome maintenance in particularly challenging environments.


Asunto(s)
Proteínas Arqueales/química , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Proteínas Arqueales/metabolismo , Sitios de Unión , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Unión Proteica , Pyrococcus furiosus , ARN/metabolismo
6.
Biol Chem ; 395(5): 559-75, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24497223

RESUMEN

The ribosome and protein synthesis are major targets within the cell for inhibition by antibiotics, such as the tetracyclines. The tetracycline family of antibiotics represent a large and diverse group of compounds, ranging from the naturally produced chlortetracycline, introduced into medical usage in the 1940s, to second and third generation semi-synthetic derivatives of tetracycline, such as doxycycline, minocycline and more recently the glycylcycline tigecycline. Here we describe the mode of interaction of tetracyclines with the ribosome and mechanism of action of this class of antibiotics to inhibit translation. Additionally, we provide an overview of the diverse mechanisms by which bacteria obtain resistance to tetracyclines, ranging from efflux, drug modification, target mutation and the employment of specialized ribosome protection proteins.


Asunto(s)
Antibacterianos/farmacología , Tetraciclinas/farmacología , Resistencia a Medicamentos , Humanos
7.
ChemMedChem ; 8(12): 1954-62, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24106106

RESUMEN

Three analogues of amythiamicin D, which differ in the substitution pattern at the methine group adjacent to C2 of the thiazole ring C, were prepared by de novo total synthesis. In amythiamicin D, this carbon atom is (S)-isopropyl substituted. Two of the new analogues carry a hydroxymethyl in place of the isopropyl group, one at an S- (compound 3 a) and the other at an R-configured stereogenic center (3 b). The third analogue, 3 c, contains a benzyloxymethyl group at an S-configured stereogenic center. Compounds 3 b and 3 c showed no inhibitory effect toward various bacterial strains, nor did they influence the translation of firefly luciferase. In stark contrast, compound 3 a inhibited the growth of Gram-positive bacteria Staphylococcus aureus (strains NCTC and Mu50) and Listeria monocytogenes EGD. In the firefly luciferase assay it proved more potent than amythiamicin D, and rescue experiments provided evidence that translation inhibition is due to binding to the bacterial elongation factor Tu (EF-Tu). The results were rationalized by structural investigations and by molecular dynamics simulations of the free compounds in solution and bound to the EF-Tu binding site. The low affinity of compound 3 b was attributed to the absence of a critical hydrogen bond, which stabilizes the conformation required for binding to EF-Tu. Compound 3 c was shown not to comply with the binding properties of the binding site.


Asunto(s)
Aminoácidos/química , Compuestos Macrocíclicos/química , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Péptidos Cíclicos/química , Péptidos/química , Tiazoles/química , Sitios de Unión , Carbono/química , Carbono/metabolismo , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/metabolismo , Compuestos Macrocíclicos/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Factor Tu de Elongación Peptídica/metabolismo , Péptidos/síntesis química , Péptidos/farmacología , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/farmacología , Unión Proteica , Estructura Terciaria de Proteína , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Azufre/química , Tiazoles/síntesis química , Tiazoles/farmacología
8.
J Mol Biol ; 405(5): 1215-32, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21134383

RESUMEN

Protein synthesis occurs in macromolecular particles called ribosomes. All ribosomes are composed of RNA and proteins. While the protein composition of bacterial and eukaryotic ribosomes has been well-characterized, a systematic analysis of archaeal ribosomes has been lacking. Here we report the first comprehensive two-dimensional PAGE and mass spectrometry analysis of archaeal ribosomes isolated from the thermophilic Pyrobaculum aerophilum and the thermoacidophilic Sulfolobus acidocaldarius Crenarchaeota. Our analysis identified all 66 ribosomal proteins (r-proteins) of the P. aerophilum small and large subunits, as well as all but two (62 of 64; 97%) r-proteins of the S. acidocaldarius small and large subunits that are predicted genomically. Some r-proteins were identified with one or two lysine methylations and N-terminal acetylations. In addition, we identify three hypothetical proteins that appear to be bona fide r-proteins of the S. acidocaldarius large subunit. Dissociation of r-proteins from the S. acidocaldarius large subunit indicates that the novel r-proteins establish tighter interactions with the large subunit than some integral r-proteins. Furthermore, cryo electron microscopy reconstructions of the S. acidocaldarius and P. aerophilum 50S subunits allow for a tentative localization of the binding site of the novel r-proteins. This study illustrates not only the potential diversity of the archaeal ribosomes but also the necessity to experimentally analyze the archaeal ribosomes to ascertain their protein composition. The discovery of novel archaeal r-proteins and factors may be the first step to understanding how archaeal ribosomes cope with extreme environmental conditions.


Asunto(s)
Proteínas Arqueales/química , Pyrobaculum/química , Proteínas Ribosómicas/química , Ribosomas/química , Proteínas Arqueales/clasificación , Proteínas Arqueales/aislamiento & purificación , Sitios de Unión , Lisina/química , Metilación , Nucleósido-Trifosfatasa/metabolismo , Filogenia , Proteómica , Proteínas Ribosómicas/clasificación , Proteínas Ribosómicas/aislamiento & purificación , Sulfolobus acidocaldarius/química
9.
J Biol Chem ; 285(46): 35910-8, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-20819953

RESUMEN

cAMP-dependent protein kinases are reversibly complexed with any of the four isoforms of regulatory (R) subunits, which contain either a substrate or a pseudosubstrate autoinhibitory domain. The human protein kinase X (PrKX) is an exemption as it is inhibited only by pseudosubstrate inhibitors, i.e. RIα or RIß but not by substrate inhibitors RIIα or RIIß. Detailed examination of the capacity of five PrKX-like kinases ranging from human to protozoa (Trypanosoma brucei) to form holoenzymes with human R subunits in living cells shows that this preference for pseudosubstrate inhibitors is evolutionarily conserved. To elucidate the molecular basis of this inhibitory pattern, we applied bioluminescence resonance energy transfer and surface plasmon resonance in combination with site-directed mutagenesis. We observed that the conserved αH-αI loop residue Arg-283 in PrKX is crucial for its RI over RII preference, as a R283L mutant was able to form a holoenzyme complex with wild type RII subunits. Changing the corresponding αH-αI loop residue in PKA Cα (L277R), significantly destabilized holoenzyme complexes in vitro, as cAMP-mediated holoenzyme activation was facilitated by a factor of 2-4, and lead to a decreased affinity of the mutant C subunit for R subunits, significantly affecting RII containing holoenzymes.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mutación , Secuencia de Aminoácidos , Animales , Células COS , Dominio Catalítico/genética , Chlorocebus aethiops , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/química , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/química , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Humanos , Cinética , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie , Trypanosoma brucei brucei/enzimología
10.
Cell ; 139(1): 212-212.e1, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19804764

RESUMEN

The translational apparatus is one of the major targets for antibiotics in the bacterial cell. Antibiotics predominantly interact with the functional centers of the ribosome, namely the messenger RNA (mRNA)-transfer RNA (tRNA) decoding region on the 30S subunit, the peptidyltransferase center on the 50S subunit, or the ribosomal exit tunnel through which the nascent polypeptide chain passes during translation. Protein synthesis can be divided into three phases: initiation, elongation, and termination/recycling.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , ARN Bacteriano/metabolismo , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...