Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JACS Au ; 3(4): 1065-1075, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37124297

RESUMEN

Fibrillar amyloid aggregates are the pathological hallmarks of multiple neurodegenerative diseases. The amyloid-ß (1-42) protein, in particular, is a major component of senile plaques in the brains of patients with Alzheimer's disease and a primary target for disease treatment. Determining the essential domains of amyloid-ß (1-42) that facilitate its oligomerization is critical for the development of aggregation inhibitors as potential therapeutic agents. In this study, we identified three key hydrophobic sites (17LVF19, 32IGL34, and 41IA42) on amyloid-ß (1-42) and investigated their involvement in the self-assembly process of the protein. Based on these findings, we designed candidate inhibitor peptides of amyloid-ß (1-42) aggregation. Using the designed peptides, we characterized the roles of the three hydrophobic regions during amyloid-ß (1-42) fibrillar aggregation and monitored the consequent effects on its aggregation property and structural conversion. Furthermore, we used an amyloid-ß (1-42) double point mutant (I41N/A42N) to examine the interactions between the two C-terminal end residues with the two hydrophobic regions and their roles in amyloid self-assembly. Our results indicate that interchain interactions in the central hydrophobic region (17LVF19) of amyloid-ß (1-42) are important for fibrillar aggregation, and its interaction with other domains is associated with the accessibility of the central hydrophobic region for initiating the oligomerization process. Our study provides mechanistic insights into the self-assembly of amyloid-ß (1-42) and highlights key structural domains that facilitate this process. Our results can be further applied toward improving the rational design of candidate amyloid-ß (1-42) aggregation inhibitors.

2.
ACS Nano ; 17(11): 9919-9937, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37204291

RESUMEN

To understand how the molecular machinery of synapses works, it is essential to determine an inventory of synaptic proteins at a subsynaptic resolution. Nevertheless, synaptic proteins are difficult to localize because of the low expression levels and limited access to immunostaining epitopes. Here, we report on the exTEM (epitope-exposed by expansion-transmission electron microscopy) method that enables the imaging of synaptic proteins in situ. This method combines TEM with nanoscale resolution and expandable tissue-hydrogel hybrids for enhanced immunolabeling with better epitope accessibility via molecular decrowding, allowing successful probing of the distribution of various synapse-organizing proteins. We propose that exTEM can be employed for studying the mechanisms underlying the regulation of synaptic architecture and function by providing nanoscale molecular distribution of synaptic proteins in situ. We also envision that exTEM is widely applicable for investigating protein nanostructures located in densely packed environments by immunostaining of commercially available antibodies at nanometer resolution.


Asunto(s)
Sinapsis , Expansión de Tejido , Sinapsis/fisiología
3.
Adv Sci (Weinh) ; 10(16): e2206939, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37026425

RESUMEN

Spatial transcriptomics is a newly emerging field that enables high-throughput investigation of the spatial localization of transcripts and related analyses in various applications for biological systems. By transitioning from conventional biological studies to "in situ" biology, spatial transcriptomics can provide transcriptome-scale spatial information. Currently, the ability to simultaneously characterize gene expression profiles of cells and relevant cellular environment is a paradigm shift for biological studies. In this review, recent progress in spatial transcriptomics and its applications in neuroscience and cancer studies are highlighted. Technical aspects of existing technologies and future directions of new developments (as of March 2023), computational analysis of spatial transcriptome data, application notes in neuroscience and cancer studies, and discussions regarding future directions of spatial multi-omics and their expanding roles in biomedical applications are emphasized.


Asunto(s)
Neoplasias , Transcriptoma , Transcriptoma/genética , Perfilación de la Expresión Génica , Neoplasias/genética , Neoplasias/terapia
4.
Adv Healthc Mater ; 12(4): e2201825, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36326169

RESUMEN

Key to the widespread and secure application of genome editing tools is the safe and effective delivery of multiple components of ribonucleoproteins (RNPs) into single cells, which remains a biological barrier to their clinical application. To overcome this issue, a robust RNP delivery platform based on a biocompatible sponge-like silica nanoconstruct (SN) for storing and directly delivering therapeutic RNPs, including Cas9 nuclease RNP (Cas9-RNP) and base editor RNP (BE-RNP) is designed. Compared with commercialized material such as lipid-based methods, up to 50-fold gene deletion and 10-fold base substitution efficiency is obtained with a low off-target efficiency by targeting various cells and genes. In particular, gene correction is successfully induced by SN-based delivery through intravenous injection in an in vivo solid-tumor model and through subretinal injection in mouse eye. Moreover, because of its low toxicity and high biodegradability, SN has negligible effect on cellular function of organs. As the engineered SN can overcome practical challenges associated with therapeutic RNP application, it is strongly expected this platform to be a modular RNPs delivery system, facilitating in vivo gene deletion and editing.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Ribonucleoproteínas , Dióxido de Silicio , Animales , Ratones , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Terapia Genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Nanoestructuras/administración & dosificación , Dióxido de Silicio/administración & dosificación , Dióxido de Silicio/farmacología
5.
Sci Rep ; 10(1): 21487, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293587

RESUMEN

Brain organoids grown from human pluripotent stem cells self-organize into cytoarchitectures resembling the developing human brain. These three-dimensional models offer an unprecedented opportunity to study human brain development and dysfunction. Characterization currently sacrifices spatial information for single-cell or histological analysis leaving whole-tissue analysis mostly unexplored. Here, we present the SCOUT pipeline for automated multiscale comparative analysis of intact cerebral organoids. Our integrated technology platform can rapidly clear, label, and image intact organoids. Algorithmic- and convolutional neural network-based image analysis extract hundreds of features characterizing molecular, cellular, spatial, cytoarchitectural, and organoid-wide properties from fluorescence microscopy datasets. Comprehensive analysis of 46 intact organoids and ~ 100 million cells reveals quantitative multiscale "phenotypes" for organoid development, culture protocols and Zika virus infection. SCOUT provides a much-needed framework for comparative analysis of emerging 3D in vitro models using fluorescence microscopy.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Organoides/citología , Organoides/crecimiento & desarrollo , Encéfalo/citología , Diferenciación Celular , Humanos , Procesamiento de Imagen Asistido por Computador , Células Madre Pluripotentes Inducidas/citología , Microscopía Fluorescente/métodos , Red Nerviosa/diagnóstico por imagen , Neuronas/citología , Fenotipo , Células Madre Pluripotentes/citología
6.
Nat Methods ; 17(6): 609-613, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32424271

RESUMEN

We developed entangled link-augmented stretchable tissue-hydrogel (ELAST), a technology that transforms tissues into elastic hydrogels to enhance macromolecular accessibility and mechanical stability simultaneously. ELASTicized tissues are highly stretchable and compressible, which enables reversible shape transformation and faster delivery of probes into intact tissue specimens via mechanical thinning. This universal platform may facilitate rapid and scalable molecular phenotyping of large-scale biological systems, such as human organs.


Asunto(s)
Hidrogeles/química , Coloración y Etiquetado/métodos , Ingeniería de Tejidos/métodos , Acrilamida/química , Animales , Fenómenos Biomecánicos , Materiales Biomiméticos/química , Bioimpresión , Corteza Cerebral/química , Reactivos de Enlaces Cruzados/química , Módulo de Elasticidad , Hipocampo/química , Humanos , Ensayo de Materiales , Ratones , Estrés Mecánico , Resistencia a la Tracción
7.
Nat Biotechnol ; 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30556815

RESUMEN

Understanding complex biological systems requires the system-wide characterization of both molecular and cellular features. Existing methods for spatial mapping of biomolecules in intact tissues suffer from information loss caused by degradation and tissue damage. We report a tissue transformation strategy named stabilization under harsh conditions via intramolecular epoxide linkages to prevent degradation (SHIELD), which uses a flexible polyepoxide to form controlled intra- and intermolecular cross-link with biomolecules. SHIELD preserves protein fluorescence and antigenicity, transcripts and tissue architecture under a wide range of harsh conditions. We applied SHIELD to interrogate system-level wiring, synaptic architecture, and molecular features of virally labeled neurons and their targets in mouse at single-cell resolution. We also demonstrated rapid three-dimensional phenotyping of core needle biopsies and human brain cells. SHIELD enables rapid, multiscale, integrated molecular phenotyping of both animal and clinical tissues.

8.
J Biol Chem ; 292(1): 386-396, 2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-27895118

RESUMEN

The signal recognition particle (SRP) is an essential ribonucleoprotein particle that mediates the co-translational targeting of newly synthesized proteins to cellular membranes. The SRP RNA is a universally conserved component of SRP that mediates key interactions between two GTPases in SRP and its receptor, thus enabling rapid delivery of cargo to the target membrane. Notably, this essential RNA is bypassed in the chloroplast (cp) SRP of green plants. Previously, we showed that the cpSRP and cpSRP receptor GTPases (cpSRP54 and cpFtsY, respectively) interact efficiently by themselves without the SRP RNA. Here, we explore the molecular mechanism by which this is accomplished. Fluorescence analyses showed that, in the absence of SRP RNA, the M-domain of cpSRP54 both accelerates and stabilizes complex assembly between cpSRP54 and cpFtsY. Cross-linking coupled with mass spectrometry and mutational analyses identified a new interaction between complementarily charged residues on the cpFtsY G-domain and the vicinity of the cpSRP54 M-domain. These residues are specifically conserved in plastids, and their evolution coincides with the loss of SRP RNA in green plants. These results provide an example of how proteins replace the functions of RNA during evolution.


Asunto(s)
Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , GTP Fosfohidrolasas/metabolismo , Plastidios/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Secuencia de Aminoácidos , Proteínas de Cloroplastos/química , Cristalografía por Rayos X , Evolución Molecular , GTP Fosfohidrolasas/química , Filogenia , Unión Proteica , Conformación Proteica , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Partícula de Reconocimiento de Señal/química
9.
Development ; 143(15): 2862-7, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27342713

RESUMEN

Accurate and robust detection of mRNA molecules in thick tissue samples can reveal gene expression patterns in single cells within their native environment. Preserving spatial relationships while accessing the transcriptome of selected cells is a crucial feature for advancing many biological areas - from developmental biology to neuroscience. However, because of the high autofluorescence background of many tissue samples, it is difficult to detect single-molecule fluorescence in situ hybridization (smFISH) signals robustly in opaque thick samples. Here, we draw on principles from the emerging discipline of dynamic nucleic acid nanotechnology to develop a robust method for multi-color, multi-RNA imaging in deep tissues using single-molecule hybridization chain reaction (smHCR). Using this approach, single transcripts can be imaged using epifluorescence, confocal or selective plane illumination microscopy (SPIM) depending on the imaging depth required. We show that smHCR has high sensitivity in detecting mRNAs in cell culture and whole-mount zebrafish embryos, and that combined with SPIM and PACT (passive CLARITY technique) tissue hydrogel embedding and clearing, smHCR can detect single mRNAs deep within thick (0.5 mm) brain slices. By simultaneously achieving ∼20-fold signal amplification and diffraction-limited spatial resolution, smHCR offers a robust and versatile approach for detecting single mRNAs in situ, including in thick tissues where high background undermines the performance of unamplified smFISH.


Asunto(s)
Hidrogel de Polietilenoglicol-Dimetacrilato/química , ARN/genética , Animales , Embrión no Mamífero/metabolismo , Hibridación Fluorescente in Situ , Pez Cebra
10.
Nature ; 527(7576): 54-8, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26466562

RESUMEN

Studies of individual living cells have revealed that many transcription factors activate in dynamic, and often stochastic, pulses within the same cell. However, it has remained unclear whether cells might exploit the dynamic interaction of these pulses to control gene expression. Here, using quantitative single-cell time-lapse imaging of Saccharomyces cerevisiae, we show that the pulsatile transcription factors Msn2 and Mig1 combinatorially regulate their target genes through modulation of their relative pulse timing. The activator Msn2 and repressor Mig1 showed pulsed activation in either a temporally overlapping or non-overlapping manner during their transient response to different inputs, with only the non-overlapping dynamics efficiently activating target gene expression. Similarly, under constant environmental conditions, where Msn2 and Mig1 exhibit sporadic pulsing, glucose concentration modulated the temporal overlap between pulses of the two factors. Together, these results reveal a time-based mode of combinatorial gene regulation. Regulation through relative signal timing is common in engineering and neurobiology, and these results suggest that it could also function broadly within the signalling and regulatory systems of the cell.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Proteínas de Unión al ADN/metabolismo , Glucosa/deficiencia , Glucosa/metabolismo , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Análisis de la Célula Individual , Factores de Tiempo , Imagen de Lapso de Tiempo , Factores de Transcripción/metabolismo
11.
Int J Mass Spectrom ; 390: 49-55, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27275130

RESUMEN

The mechanisms of electron capture and electron transfer dissociation (ECD and ETD) are investigated by covalently attaching a free-radical hydrogen atom scavenger to a peptide. The 2,2,6,6-tetramethylpiperidin-l-oxyl (TEMPO) radical was chosen as the scavenger due to its high hydrogen atom affinity (ca. 280 kJ/mol) and low electron affinity (ca. 0.45 ev), and was derivatized to the model peptide, FQXTEMPOEEQQQTEDELQDK. The XTEMPO residue represents a cysteinyl residue derivatized with an acetamido-TEMPO group. The acetamide group without TEMPO was also examined as a control. The gas phase proton affinity (882 kJ/mol) of TEMPO is similar to backbone amide carbonyls (889 kJ/mol), minimizing perturbation to internal solvation and sites of protonation of the derivatized peptides. Collision induced dissociation (CID) of the TEMPO tagged peptide dication generated stable odd-electron b and y type ions without indication of any TEMPO radical induced fragmentation initiated by hydrogen abstraction. The type and abundance of fragment ions observed in the CID spectra of the TEMPO and acetamide tagged peptides are very similar. However, ECD of the TEMPO labeled peptide dication yielded no backbone cleavage. We propose that a labile hydrogen atom in the charge reduced radical ions is scavenged by the TEMPO radical moiety, resulting in inhibition of N-Cα backbone cleavage processes. Supplemental activation after electron attachment (ETcaD) and CID of the charge-reduced precursor ion generated by electron transfer of the TEMPO tagged peptide dication produced a series of b + H (bH) and y + H (yH) ions along with some c ions having suppressed intensities, consistent with stable O-H bond formation at the TEMPO group. In summary, the results indicate that ECD and ETD backbone cleavage processes are inhibited by scavenging of a labile hydrogen atom by the localized TEMPO radical moiety. This observation supports the conjecture that ECD and ETD processes involve long-lived intermediates formed by electron capture/transfer in which a labile hydrogen atom is present and plays a key role with low energy processes leading to c and z ion formation. Ab initio and density functional calculations are performed to support our conclusion, which depends most importantly on the proton affinity, electron affinity and hydrogen atom affinity of the TEMPO moiety.

12.
Chem Sci ; 6(8): 4550-4560, 2015 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29142703

RESUMEN

We investigate the mechanism of disulfide bond cleavage in gaseous peptide and protein ions initiated by a covalently-attached regiospecific acetyl radical using mass spectrometry (MS). Highly selective S-S bond cleavages with some minor C-S bond cleavages are observed by a single step of collisional activation. We show that even multiple disulfide bonds in intact bovine insulin are fragmented in the MS2 stage, releasing the A- and B-chains with a high yield, which has been challenging to achieve by other ion activation methods. Yet, regardless of the previous reaction mechanism studies, it has remained unclear why (1) disulfide bond cleavage is preferred to peptide backbone fragmentation, and why (2) the S-S bond that requires the higher activation energy conjectured in previously suggested mechanisms is more prone to be cleaved than the C-S bond by hydrogen-deficient radicals. To probe the mechanism of these processes, model peptides possessing deuterated ß-carbon(s) at the disulfide bond are employed. It is suggested that the favored pathway of S-S bond cleavage is triggered by direct acetyl radical attack at sulfur with concomitant cleavage of the S-S bond (SH2). The activation energy for this process is substantially lower by ∼9-10 kcal mol-1 than those of peptide backbone cleavage processes determined by density functional quantum chemical calculations. Minor reaction pathways are initiated by hydrogen abstraction from the α-carbon or the ß-carbon of a disulfide, followed by ß-cleavages yielding C-S or S-S bond scissions. The current mechanistic findings should be generally applicable to other radical-driven disulfide bond cleavages with different radical species such as the benzyl and methyl pyridyl radicals.

13.
J Phys Chem A ; 118(37): 8380-92, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-24605822

RESUMEN

Free radical-initiated peptide sequencing (FRIPS) mass spectrometry derives advantage from the introduction of highly selective low-energy dissociation pathways in target peptides. An acetyl radical, formed at the peptide N-terminus via collisional activation and subsequent dissociation of a covalently attached radical precursor, abstracts a hydrogen atom from diverse sites on the peptide, yielding sequence information through backbone cleavage as well as side-chain loss. Unique free-radical-initiated dissociation pathways observed at serine and threonine residues lead to cleavage of the neighboring N-terminal Cα-C or N-Cα bond rather than the typical Cα-C bond cleavage observed with other amino acids. These reactions were investigated by FRIPS of model peptides of the form AARAAAXAA, where X is the amino acid of interest. In combination with density functional theory (DFT) calculations, the experiments indicate the strong influence of hydrogen bonding at serine or threonine on the observed free radical chemistry. Hydrogen bonding of the side-chain hydroxyl group with a backbone carbonyl oxygen aligns the singly occupied π orbital on the ß-carbon and the N-Cα bond, leading to low-barrier ß-cleavage of the N-Cα bond. Interaction with the N-terminal carbonyl favors a hydrogen-atom transfer process to yield stable c and z(•) ions, whereas C-terminal interaction leads to effective cleavage of the Cα-C bond through rapid loss of isocyanic acid. Dissociation of the Cα-C bond may also occur via water loss followed by ß-cleavage from a nitrogen-centered radical. These competitive dissociation pathways from a single residue illustrate the sensitivity of gas-phase free radical chemistry to subtle factors such as hydrogen bonding that affect the potential energy surface for these low-barrier processes.


Asunto(s)
Serina/química , Treonina/química , Transporte de Electrón , Radicales Libres/química , Enlace de Hidrógeno , Modelos Moleculares , Conformación Molecular , Nitrógeno/química , Análisis de Secuencia de Proteína , Termodinámica
14.
Development ; 140(18): 3882-91, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23946444

RESUMEN

The interpretation of extracellular cues leading to the polarization of intracellular components and asymmetric cell divisions is a fundamental part of metazoan organogenesis. The Caenorhabditis elegans vulva, with its invariant cell lineage and interaction of multiple cell signaling pathways, provides an excellent model for the study of cell polarity within an organized epithelial tissue. Here, we show that the fibroblast growth factor (FGF) pathway acts in concert with the Frizzled homolog LIN-17 to influence the localization of SYS-1, a component of the Wnt/ß-catenin asymmetry pathway, indirectly through the regulation of cwn-1. The source of the FGF ligand is the primary vulval precursor cell (VPC) P6.p, which controls the orientation of the neighboring secondary VPC P7.p by signaling through the sex myoblasts (SMs), activating the FGF pathway. The Wnt CWN-1 is expressed in the posterior body wall muscle of the worm as well as in the SMs, making it the only Wnt expressed on the posterior and anterior sides of P7.p at the time of the polarity decision. Both sources of cwn-1 act instructively to influence P7.p polarity in the direction of the highest Wnt signal. Using single molecule fluorescence in situ hybridization, we show that the FGF pathway regulates the expression of cwn-1 in the SMs. These results demonstrate an interaction between FGF and Wnt in C. elegans development and vulval cell lineage polarity, and highlight the promiscuous nature of Wnts and the importance of Wnt gradient directionality within C. elegans.


Asunto(s)
Caenorhabditis elegans/citología , Linaje de la Célula , Polaridad Celular , Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Vulva/citología , Proteínas Wnt/metabolismo , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Ligandos , Modelos Biológicos , Mioblastos/citología , Mioblastos/metabolismo , Fenotipo , Transporte de Proteínas , Células Madre/citología , Células Madre/metabolismo , Fracciones Subcelulares/metabolismo , Vulva/crecimiento & desarrollo , Vulva/metabolismo , beta Catenina/metabolismo
15.
J Am Chem Soc ; 135(29): 10684-92, 2013 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-23806039

RESUMEN

Nature excels at breaking down glycans into their components, typically via enzymatic acid-base catalysis to achieve selective cleavage of the glycosidic bond. Noting the importance of proton transfer in the active site of many of these enzymes, we describe a sequestered proton reagent for acid-catalyzed glycan sequencing (PRAGS) that derivatizes the reducing terminus of glycans with a pyridine moiety possessing moderate proton affinity. Gas-phase collisional activation of PRAGS-derivatized glycans predominately generates C1-O glycosidic bond cleavages retaining the charge on the reducing terminus. The resulting systematic PRAGS-directed deconstruction of the glycan can be analyzed to extract glycan composition and sequence. Glycans are also highly susceptible to dissociation by free radicals, mainly reactive oxygen species, which inspired our development of a free radical activated glycan sequencing (FRAGS) reagent, which combines a free radical precursor with a pyridine moiety that can be coupled to the reducing terminus of target glycans. Collisional activation of FRAGS-derivatized glycans generates a free radical that reacts to yield abundant cross-ring cleavages, glycosidic bond cleavages, and combinations of these types of cleavages with retention of charge at the reducing terminus. Branched sites are identified with the FRAGS reagent by the specific fragmentation patterns that are observed only at these locations. Mechanisms of dissociation as well as application of the reagents for both linear and highly branched glycan structure analysis are investigated and discussed. The approach developed here for glycan structure analysis offers unique advantages compared to earlier studies employing mass spectrometry for this purpose.


Asunto(s)
Radicales Libres/química , Espectrometría de Masas/métodos , Polisacáridos/química , Biomimética , Disacáridos/análisis , Glucanos/análisis , Indicadores y Reactivos , Isomerismo
16.
Anal Chem ; 84(6): 2662-9, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22339618

RESUMEN

We present novel homobifunctional amine-reactive clickable cross-linkers (CXLs) for investigation of three-dimensional protein structures and protein-protein interactions (PPIs). CXLs afford consolidated advantages not previously available in a simple cross-linker, including (1) their small size and cationic nature at physiological pH, resulting in good water solubility and cell-permeability, (2) an alkyne group for bio-orthogonal conjugation to affinity tags via the click reaction for enrichment of cross-linked peptides, (3) a nucleophilic displacement reaction involving the 1,2,3-triazole ring formed in the click reaction, yielding a lock-mass reporter ion for only clicked peptides, and (4) higher charge states of cross-linked peptides in the gas-phase for augmented electron transfer dissociation (ETD) yields. Ubiquitin, a lysine-abundant protein, is used as a model system to demonstrate structural studies using CXLs. To validate the sensitivity of our approach, biotin-azide labeling and subsequent enrichment of cross-linked peptides are performed for cross-linked ubiquitin digests mixed with yeast cell lysates. Cross-linked peptides are detected and identified by collision induced dissociation (CID) and ETD with linear quadrupole ion trap (LTQ)-Fourier transform ion cyclotron resonance (FTICR) and LTQ-Orbitrap mass spectrometers. The application of CXLs to more complex systems (e.g., in vivo cross-linking) is illustrated by Western blot detection of Cul1 complexes including known binders, Cand1 and Skp2, in HEK 293 cells, confirming good water solubility and cell-permeability.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Espectrometría de Masas/métodos , Proteínas/química , Proteómica/métodos , Secuencia de Aminoácidos , Avidina/química , Cromatografía de Afinidad , Células HEK293 , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Ubiquitina/química
17.
J Am Chem Soc ; 134(5): 2672-80, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22225568

RESUMEN

We report the development of novel reagents for cell-level protein quantification, referred to as Caltech isobaric tags (CITs), which offer several advantages in comparison with other isobaric tags (e.g., iTRAQ and TMT). Click chemistry, copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), is applied to generate a gas-phase cleavable linker suitable for the formation of reporter ions. Upon collisional activation, the 1,2,3-triazole ring constructed by CuAAC participates in a nucleophilic displacement reaction forming a six-membered ring and releasing a stable cationic reporter ion. To investigate its utility in peptide mass spectrometry, the energetics of the observed fragmentation pathway are examined by density functional theory. When this functional group is covalently attached to a target peptide, it is found that the nucleophilic displacement occurs in competition with formation of b- and y-type backbone fragment ions regardless of the amino acid side chains present in the parent bioconjugate, confirming that calculated reaction energetics of reporter ion formation are similar to those of backbone fragmentations. Based on these results, we apply this selective fragmentation pathway for the development of CIT reagents. For demonstration purposes, duplex CIT reagent is prepared using a single isotope-coded precursor, allyl-d(5)-bromide, with reporter ions appearing at m/z 164 and 169. Isotope-coded allyl azides for the construction of the reporter ion group can be prepared from halogenated alkyl groups which are also employed for the mass balance group via N-alkylation, reducing the cost and effort for synthesis of isobaric pairs. Owing to their modular designs, an unlimited number of isobaric combinations of CIT reagents are, in principle, possible. The reporter ion mass can be easily tuned to avoid overlapping with common peptide MS/MS fragments as well as the low mass cutoff problems inherent in ion trap mass spectrometers. The applicability of the CIT reagent is tested with several model systems involving protein mixtures and cellular systems.


Asunto(s)
Aminas/síntesis química , Proteínas/análisis , Aminas/química , Química Clic , Iones/síntesis química , Iones/química , Estructura Molecular , Teoría Cuántica
18.
J Am Chem Soc ; 131(15): 5444-59, 2009 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-19331417

RESUMEN

Electron capture dissociation (ECD) and electron transfer dissociation (ETD) of doubly protonated electron affinity (EA)-tuned peptides were studied to further illuminate the mechanism of these processes. The model peptide FQpSEEQQQTEDELQDK, containing a phosphoserine residue, was converted to EA-tuned peptides via beta-elimination and Michael addition of various thiol compounds. These include propanyl, benzyl, 4-cyanobenzyl, perfluorobenzyl, 3,5-dicyanobenzyl, 3-nitrobenzyl, and 3,5-dinitrobenzyl structural moieties, having a range of EA from -1.15 to +1.65 eV, excluding the propanyl group. Typical ECD or ETD backbone fragmentations are completely inhibited in peptides with substituent tags having EA over 1.00 eV, which are referred to as electron predators in this work. Nearly identical rates of electron capture by the dications substituted by the benzyl (EA = -1.15 eV) and 3-nitrobenzyl (EA = 1.00 eV) moieties are observed, which indicates the similarity of electron capture cross sections for the two derivatized peptides. This observation leads to the inference that electron capture kinetics are governed by the long-range electron-dication interaction and are not affected by side chain derivatives with positive EA. Once an electron is captured to high-n Rydberg states, however, through-space or through-bond electron transfer to the EA-tuning tags or low-n Rydberg states via potential curve crossing occurs in competition with transfer to the amide pi* orbital. The energetics of these processes are evaluated using time-dependent density functional theory with a series of reduced model systems. The intramolecular electron transfer process is modulated by structure-dependent hydrogen bonds and is heavily affected by the presence and type of electron-withdrawing groups in the EA-tuning tag. The anion radicals formed by electron predators have high proton affinities (approximately 1400 kJ/mol for the 3-nitrobenzyl anion radical) in comparison to other basic sites in the model peptide dication, facilitating exothermic proton transfer from one of the two sites of protonation. This interrupts the normal sequence of events in ECD or ETD, leading to backbone fragmentation by forming a stable radical intermediate. The implications which these results have for previously proposed ECD and ETD mechanisms are discussed.


Asunto(s)
Transporte de Electrón , Péptidos/química , Secuencia de Bases , Fenómenos Químicos , Radicales Libres/química , Fosfoserina/química , Teoría Cuántica , Compuestos de Sulfhidrilo/química
19.
ISA Trans ; 48(3): 362-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19249777

RESUMEN

A Core Protection Calculator System (CPCS) was developed to initiate a Reactor Trip under the circumstance of certain transients by a Combustion Engineering Company. The major function of the Core Protection Calculator System is to generate contact outputs for the Departure from Nucleate Boiling Ratio (DNBR) Trip and a Local Power Density (LPD) Trip. But in a Core Protection Calculator System, a trip cause cannot be identified, thus only trip signals are transferred to the Plant Protection System (PPS) and only the trip status is displayed. It could take a considerable amount of time and effort for a plant operator to analyze the trip causes of a Core Protection Calculator System. So, a Cause Analysis System for a Core Protection Calculator System (CASCPCS) has been developed by using the rule-base deduction method to assist operators in a Nuclear Power Plant. CASCPCS consists of three major parts. Inference engine has a role of controlling the searching knowledge base, executing the rules and tracking the inference process by using the depth-first searching method. Knowledge base consists of four major parts: rules, data base constants, trip buffer variables and causes. And a user interface is implemented by using menu-driven and window display techniques. The advantage of CASCPCS is that it saves time and effort to diagnose the trip causes of a Core Protection Calculator System, it increases a plant's availability and reliability, and it makes it easy to manage CASCPCS because of using only a cursor control.


Asunto(s)
Algoritmos , Técnicas de Apoyo para la Decisión , Modelos Teóricos , Reactores Nucleares/instrumentación , Simulación por Computador , Falla de Equipo , Análisis de Falla de Equipo , Retroalimentación , Control de Calidad
20.
Can J Psychiatry ; 51(8): 540-5, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16933591

RESUMEN

OBJECTIVE: To review the data on the efficacy of oxcarbazepine (OXC) in bipolar disorder (BD) and to provide recommendations for clinicians on the use of this medication in treating BD. METHOD: Using the terms oxcarbazepine and bipolar disorder, oxcarbazepine and mania, or oxcarbazepine and bipolar depression, we conducted a computer-aided search of MEDLINE for the years 1950 to 2005. RESULTS: Case reports, retrospective chart reviews, open prospective studies, and double-blind studies reported the efficacy and effectiveness of OXC in treating BD. The data indicate that OXC has efficacy in treating acute mania and may be a useful add-on in treating acute bipolar depression and in BD prophylaxis. OXC is generally well-tolerated. CONCLUSION: We recommend using OXC as monotherapy or as add-on therapy in refractory mania, but we recommend it be used predominantly as an add-on treatment for other phases of BD in patients who have not improved with well-established treatments or in patients who have difficulty tolerating adequate dosages.


Asunto(s)
Antipsicóticos/uso terapéutico , Trastorno Bipolar/tratamiento farmacológico , Carbamazepina/análogos & derivados , Carbamazepina/uso terapéutico , Método Doble Ciego , Guías como Asunto , Humanos , Oxcarbazepina , Ensayos Clínicos Controlados Aleatorios como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...