Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomol Ther (Seoul) ; 32(3): 361-367, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38589300

RESUMEN

In this study, we investigated the efficacy of kaempferol (a flavonoid found in plants and plant-derived foods such as kale, beans, tea, spinach and broccoli) on vascular contractibility and aimed to clarify the detailed mechanism underlying the relaxation. Isometric contractions of divested muscles were stored and linked with western blot analysis which was carried out to estimate the phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) and phosphorylation-dependent inhibitory protein for myosin phosphatase (CPI-17) and to estimate the effect of kaempferol on the RhoA/ROCK/CPI-17 pathway. Kaempferol conspicuously impeded phorbol ester-, fluoride- and a thromboxane mimetic-derived contractions regardless of endothelial nitric oxide synthesis, indicating its direct effect on smooth muscles. It also conspicuously impeded the fluoride-derived elevation in phospho-MYPT1 rather than phospho-CPI-17 levels and phorbol 12,13-dibutyrate-derived increase in phospho-CPI-17 and phospho-ERK1/2 levels, suggesting the depression of PKC and MEK activities and subsequent phosphorylation of CPI-17 and ERK1/2. Taken together, these outcomes suggest that kaempferol-derived relaxation incorporates myosin phosphatase retrieval and calcium desensitization, which appear to be modulated by CPI-17 dephosphorylation mainly through PKC inactivation.

2.
Biomol Ther (Seoul) ; 31(2): 193-199, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36065763

RESUMEN

In this investigation, we made a study of the efficacy of luteolin (a flavonoid found in plants such as vegetables, herbs and fruits) on vascular contractibility and to elucidate the mechanism underlying the relaxation. Isometric contractions of denuded muscles were stored and combined with western blot analysis which was conducted to assess the phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) and phosphorylation-dependent inhibitory protein for myosin phosphatase (CPI-17) and to examine the effect of luteolin on the RhoA/ROCK/CPI-17 pathway. Luteolin significantly alleviated phorbol ester-, fluoride- and thromboxane mimetic-elicited contractions regardless of endothelial nitric oxide synthesis, implying its direct effect on smooth muscle. It also significantly alleviated the fluoride-elicited elevation in pCPI-17 and pMYPT1 levels and phorbol 12,13-dibutyrate-elicited increase in pERK1/2 level, suggesting depression of ROCK and PKC/MEK activity and ensuing phosphorylation of MYPT1, CPI-17 and ERK1/2. Taken together, these results suggest that luteolin-elicited relaxation includes myosin phosphatase reactivation and calcium desensitization, which seems to be arbitrated by CPI-17 dephosphorylation via ROCK/PKC inhibition.

3.
Biomol Ther (Seoul) ; 30(4): 348-359, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35768332

RESUMEN

Gastric adenocarcinoma is among the top causes of cancer-related death and is one of the most commonly diagnosed carcinomas worldwide. Benzyl isothiocyanate (BITC) has been reported to inhibit the gastric cancer metastasis. In our previous study, BITC induced apoptosis in AGS cells. The purpose of the present study was to investigate the effect of BITC on autophagy mechanism in AGS cells. First, the AGS cells were treated with 5, 10, or 15 µM BITC for 24 h, followed by an analysis of the autophagy mechanism. The expression level of autophagy proteins involved in different steps of autophagy, such as LC3B, p62/SQSTM1, Atg5-Atg12, Beclin1, p-mTOR/mTOR ratio, and class III PI3K was measured in the BITC-treated cells. Lysosomal function was investigated using cathepsin activity and Bafilomycin A1, an autophagy degradation stage inhibitor. Methods including qPCR, western blotting, and immunocytochemistry were employed to detect the protein expression levels. Acridine orange staining and omnicathepsin assay were conducted to analyze the lysosomal function. siRNA transfection was performed to knock down the LC3B gene. BITC reduced the level of autophagy protein such as Beclin 1, class III PI3K, and Atg5-Atg12. BITC also induced lysosomal dysfunction which was shown as reducing cathepsin activity, protein level of cathepsin, and enlargement of acidic vesicle. Overall, the results showed that the BITC-induced AGS cell death mechanism also comprises the inhibition of the cytoprotective autophagy at both initiation and degradation steps.

4.
Artículo en Inglés | MEDLINE | ID: mdl-35096122

RESUMEN

Chronic stress can cause the gastrointestinal disorders characterized by an altered bowel movement and abdominal pain. Studies have shown that Humulus japonicus extract (HJE) has anti-inflammatory and antidiarrheal effects, and Phragmites rhizoma extract (PEP) has antioxidative and antistress effects. The present study aimed to investigate the possible effects of HJE and PEP in rat models with stress-induced gastrointestinal dysfunctions. The rats were exposed to water avoidance stress (WAS, 1 h/day) for 10 days to induce gastrointestinal disorders. We found that WAS significantly increased fecal pellet output during 1 h stress, gastric emptying, colonic contractility, and permeability compared to the normal rats. Pretreatment with HJE and PEP (0.25 and 0.5 mL/kg, both administered separately) improved the increased gastric emptying and colonic contractility induced by electrical field stimulation, acetylcholine, and serotonin and also alleviated the increased colonic permeability. HJE and PEP also increased the claudin-1 and occludin expressions, reduced by WAS. WAS increased the concentration of TNF-α and TBARS and reduced FRAP. HJE and PEP recovered these effects. HJE and PEP improved the gastrointestinal disorders induced by WAS by upregulating the tight junction protein, possibly acting on cholinergic and serotonergic receptors to abolish the colonic hypercontractility and hyperpermeability and degradation of inflammatory cytokines via an antioxidant effect.

5.
Health Res Policy Syst ; 20(1): 4, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991612

RESUMEN

BACKGROUND: The pharmaceutical industry is heavily regulated. Partly for this reason, new drugs generally take over 10 years from the product development stage to market entry. Although regulations affect the pharmaceutical industry over a long period, previous studies investigating the impact of new regulatory policies have usually focused on the short period before and after implementing that policy. Therefore, the purpose of this study is to examine whether and how significantly regulatory policies affect long-term innovation in the pharmaceutical industry in Korea. METHODS: This study focused on three significant regulatory policies: the introduction of the product patent system, changes in the Good Manufacturing Practice (GMP) system, and the Drug Expenditure Rationalization Plan (DERP). The study used interrupted time series (ITS) analysis to investigate the long-term impacts of the policies before and after implementation. RESULTS: Our results show that introducing the product patent system in 1987 significantly increased the number of Korean patent applications. The effect of the revised GMP policies was also statistically significant, both before and after implementation and between pre-emptive companies and non-pre-emptive ones. However, due to the companies' negotiations with the regulatory authorities or the regulatory system that links drug approval and price evaluation, the DERP did not significantly delay new drug registration in Korea. CONCLUSION: This study showed that the policies of the product patent system, GMP policies, and DERP regulations have significantly encouraged pharmaceutical companies to strive to meet regulatory requirements and promote innovation in Korea. The study suggests that it is necessary for companies to pre-emptively respond to systemic changes in development and production strategies to deal with regulatory changes and achieve sustainable growth. Also, our study results indicate that since government policies motivate the innovative system of the pharmaceutical industry, governmental authorities, when formulating pharmaceutical policies, need to consider the impact on the long-term innovation of the industry.


Asunto(s)
Aprobación de Drogas , Industria Farmacéutica , Comercio , Estudios Longitudinales , República de Corea
6.
Biomol Ther (Seoul) ; 30(2): 145-150, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34231489

RESUMEN

In this study, we investigated the influence of galangin on vascular contractibility and to determine the mechanism underlying the relaxation. Isometric contractions of denuded aortic muscles were recorded and combined with western blot analysis which was performed to measure the phosphorylation of phosphorylation-dependent inhibitory protein of myosin phosphatase (CPI-17) and myosin phosphatase targeting subunit 1 (MYPT1) and to evaluate the effect of galangin on the RhoA/ROCK/CPI-17 pathway. Galangin significantly inhibited phorbol ester-, fluoride- and thromboxane mimetic-induced vasoconstrictions regardless of endothelial nitric oxide synthesis, suggesting its direct effect on vascular smooth muscle. Galangin significantly inhibited the fluoride-dependent increase in pMYPT1 and pCPI-17 levels and phorbol 12,13-dibutyrate-dependent increase in pERK1/2 level, suggesting repression of ROCK and MEK activity and subsequent phosphorylation of MYPT1, CPI-17 and ERK1/2. Taken together, these results suggest that galangin-induced relaxation involves myosin phosphatase reactivation and calcium desensitization, which appears to be mediated by CPI-17 dephosphorylation via not PKC but ROCK inactivation.

7.
Sci Rep ; 11(1): 23490, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873207

RESUMEN

Paclitaxel is an anti-microtubule agent that has been shown to induce cell death in gastric cancer. However, the detailed mechanism of action is unclear. In this study, we reveal that the paclitaxel-induced cell death mechanism involves mitotic catastrophe, autophagy and apoptosis in AGS cells. Paclitaxel induced intrinsic apoptosis by activating caspase-3, caspase-9 and PARP. In addition, the significant increase in autophagy marker LC3B-II, together with Atg5, class III PI3K and Beclin-1, and the down-regulation of p62 following paclitaxel treatment verified that paclitaxel induced autophagy. Further experiments showed that paclitaxel caused mitotic catastrophe, cell cycle arrest of the accumulated multinucleated giant cells at the G2/M phase and induction of cell death in 24 h. Within 48 h, the arrested multinucleated cells escaped mitosis by decreasing cell division regulatory proteins and triggered cell death. Cells treated with paclitaxel for 48 h were grown in fresh medium for 24 h and checked for CDC2, CDC25C and lamin B1 protein expressions. These proteins had decreased significantly, indicating that the remaining cells became senescent. In conclusion, it is suggested that paclitaxel-induced mitotic catastrophe is an integral part of the cell death mechanism, in addition to apoptosis and autophagy, in AGS cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Mitosis/efectos de los fármacos , Paclitaxel/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Antineoplásicos/farmacología , Caspasas/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
8.
Korean J Physiol Pharmacol ; 25(6): 507-515, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34697261

RESUMEN

Postoperative ileus (POI), a symptom that occurs after abdominal surgery, reduces gastrointestinal motility. Although its mechanism is unclear, POI symptoms are known to be caused by inflammation 6 to 72 h after surgery. As proton pump inhibitors exhibit protective effect against acute inflammation, the purpose of this study was to determine the effect of ilaprazole on a POI rat model. POI was induced in rats by abdominal surgery. Rats were divided into six groups: control: normal rat + 0.5% CMC-Na, vehicle: POI rat + 0.5% CMC-Na, mosapride: POI rat + mosapride 2 mg/kg, ilaprazole 1 mg/kg: POI rat + ilaprazole 1 mg/kg, ilaprazole 3 mg/kg: POI rat + ilaprazole 3 mg/kg, and ilaprazole 10 mg/kg: POI rat + ilaprazole 10 mg/kg. Gastrointestinal motility was confirmed by measuring gastric emptying (GE) and gastrointestinal transit (GIT). In the small intestine, inflammation was confirmed by measuring TNF-α and IL-1ß; oxidative stress was confirmed by SOD, GSH, and MDA levels; and histological changes were observed by H&E staining. Based on the findings, GE and GIT were decreased in the vehicle group and improved in the ilaprazole 10 mg/kg group. In the ilaprazole 10 mg/kg group, TNF-α and IL-1ß levels were decreased, SOD and GSH levels were increased, and MDA levels were decreased. Histological damage was also reduced in the ilaprazole-treated groups. These findings suggest that ilaprazole prevents the decrease in gastrointestinal motility, a major symptom of postoperative ileus, and reduces inflammation and oxidative stress.

9.
Food Sci Biotechnol ; 30(7): 979-988, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34395029

RESUMEN

Chronic diabetes mellitus (DM) can cause liver dysfunction and other complications. As Humulus japonicus is known to have anti-inflammatory and antioxidative effects, we sought to evaluate the hepatoprotective effect of H. japonicus extract (HJE) on a DM model. HJE reduced aspartate aminotransferase, alanine aminotransferase, and direct bilirubin levels and restored albumin activities relative to those found in the DM model. The abnormal levels of triglyceride, total cholesterol, high-density lipoprotein, and low-density lipoprotein in DM returned to normal levels after HJE treatment. DM-induced inflammation of the liver was ameliorated by HJE through reduction of tumor necrosis factor-α, interleukin-1ß, and cyclooxygenase-2 levels. HJE treatment downregulated malondialdehyde levels that were increased by DM. However, the downregulated superoxide dismutase and glutathione levels in DM were increased by HJE. Histological studies showed that HJE improves the liver tissue damage caused by DM. Collectively, our findings suggest that HJE may improve liver damage in DM and exhibit an inhibitory effect on hepatic injury through its anti-inflammatory and antioxidative actions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10068-021-00924-w.

10.
Biomol Ther (Seoul) ; 29(4): 353-364, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34127572

RESUMEN

The gastrointestinal (GI) tract is a series of hollow organs that is responsible for the digestion and absorption of ingested foods and the excretion of waste. Any changes in the GI tract can lead to GI disorders. GI disorders are highly prevalent in the population and account for substantial morbidity, mortality, and healthcare utilization. GI disorders can be functional, or organic with structural changes. Functional GI disorders include functional dyspepsia and irritable bowel syndrome. Organic GI disorders include inflammation of the GI tract due to chronic infection, drugs, trauma, and other causes. Recent studies have highlighted a new explanatory mechanism for GI disorders. It has been suggested that autophagy, an intracellular homeostatic mechanism, also plays an important role in the pathogenesis of GI disorders. Autophagy has three primary forms: macroautophagy, microautophagy, and chaperone-mediated autophagy. It may affect intestinal homeostasis, host defense against intestinal pathogens, regulation of the gut microbiota, and innate and adaptive immunity. Drugs targeting autophagy could, therefore, have therapeutic potential for treating GI disorders. In this review, we provide an overview of current understanding regarding the evidence for autophagy in GI diseases and updates on potential treatments, including drugs and complementary and alternative medicines.

11.
Biomol Ther (Seoul) ; 29(4): 419-426, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33814417

RESUMEN

In this study, we aimed to investigate the effects of 8 weeks of treatment with a combination of evogliptin and leucine, a branchedchain amino acid, in mice with high-fat diet (HFD)-induced diabetes. Treatment with evogliptin alone or in combination with leucine reduced the body weight of the mice, compared to the case for those from the HFD control group. Long-term treatment with evogliptin alone or in combination with leucine resulted in a significant reduction in glucose intolerance; however, leucine alone did not affect postprandial glucose control, compared to the case for the mice from the HFD control group. Furthermore, the combination of evogliptin and leucine prevented HFD-induced insulin resistance, which was associated with improved homeostasis model assessment for insulin resistance, accompanied by markedly reduced liver fat deposition, hepatic triglyceride content, and plasma alanine aminotransferase levels. The combination of evogliptin and leucine increased the gene expression levels of hepatic peroxisome proliferator-activated receptor alpha, whereas those of the sterol regulatory element-binding protein 1 and stearoyl-CoA desaturase 1 were not altered, compared to the case in the HFD-fed mice (p<0.05). Thus, our results suggest that the combination of evogliptin and leucine may be beneficial for treating patients with type 2 diabetes and hepatic steatosis; however, further studies are needed to delineate the molecular mechanisms underlying the action of this combination.

12.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33801927

RESUMEN

BACKGROUND: Nuclear protein-1 (NUPR1, also known as p8/Com-1) is a transcription factor involved in the regulation of cellular stress responses, including serum starvation and drug stimulation. METHODS: We investigated the mechanism of NUPR1 nuclear translocation involving karyopherin ß1 (KPNB1), using a single-molecule binding assay and confocal microscopy. The cellular effects associated with NUPR1-KPNB1 inhibition were investigated by gene expression profiling and cell cycle analysis. RESULTS: The single-molecule binding assay revealed that KPNB1 bound to NUPR1 with a binding affinity of 0.75 nM and that this binding was blocked by the aminothiazole ATZ-502. Following doxorubicin-only treatment, NUPR1 was translocated to the nucleus in more than 90% and NUPR1 translocation was blocked by the ATZ-502 combination treatment in MDA-MB-231 with no change in NUPR1 expression, providing strong evidence that NUPR1 nuclear translocation was directly inhibited by the ATZ-502 treatment. Inhibition of KPNB1 and NUPR1 binding was associated with a synergistic anticancer effect (up to 19.6-fold) in various cancer cell lines. NUPR1-related genes were also downregulated following the doxorubicin-ATZ-502 combination treatment. CONCLUSION: Our current findings clearly demonstrate that NUPR1 translocation into the nucleus requires karyopherin ß1 binding. Inhibition of the KPNB1 and NUPR1 interaction may constitute a new cancer therapeutic approach that can increase the drug efficacy while reducing the side effects.


Asunto(s)
Acrilamidas/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Benzotiazoles/farmacología , Doxorrubicina/farmacología , Proteínas de Neoplasias/metabolismo , beta Carioferinas/metabolismo , Acrilamidas/química , Transporte Activo de Núcleo Celular/efectos de los fármacos , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Benzotiazoles/química , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Sinergismo Farmacológico , Humanos , Células MCF-7 , Microscopía Confocal , Estructura Molecular , Unión Proteica/efectos de los fármacos
13.
PLoS One ; 16(4): e0251012, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33914833

RESUMEN

Asthma is a well-known bronchial disease that causes bronchial inflammation, narrowing of the bronchial tubes, and bronchial mucus secretion, leading to bronchial blockade. In this study, we investigated the association between phosphodiesterase (PDE), specifically PDE1, and asthma using 3-isobutyl-1-methylxanthine (IBMX; a non-specific PDE inhibitor) and vinpocetine (Vinp; a PDE1 inhibitor). Balb/c mice were randomized to five treatment groups: control, ovalbumin (OVA), OVA + IBMX, OVA + Vinp, and OVA + dexamethasone (Dex). All mice were sensitized and challenged with OVA, except for the control group. IBMX, Vinp, or Dex was intraperitoneally administered 1 h before the challenge. Vinp treatment significantly inhibited the increase in airway hyper-responsiveness (P<0.001) and reduced the number of inflammatory cells, particularly eosinophils, in the lungs (P<0.01). It also ameliorated the damage to the bronchi and alveoli and decreased the OVA-specific IgE levels in serum, an indicator of allergic inflammation increased by OVA (P<0.05). Furthermore, the increase in interleukin-13, a known Th2 cytokine, was significantly decreased by Vinp (P<0.05), and Vinp regulated the release and mRNA expression of macrophage inflammatory protein-1ß (MIP-1ß) increased by OVA (P<0.05). Taken together, these results suggest that PDE1 is associated with allergic lung inflammation induced by OVA. Thus, PDE1 inhibitors can be a promising therapeutic target for the treatment of asthma.


Asunto(s)
Antiinflamatorios/administración & dosificación , Asma/tratamiento farmacológico , Quimiocina CCL4/genética , Regulación hacia Abajo , Ovalbúmina/efectos adversos , Alcaloides de la Vinca/administración & dosificación , 1-Metil-3-Isobutilxantina/administración & dosificación , 1-Metil-3-Isobutilxantina/farmacología , Animales , Antiinflamatorios/farmacología , Asma/inducido químicamente , Asma/genética , Dexametasona/administración & dosificación , Dexametasona/farmacología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Distribución Aleatoria , Alcaloides de la Vinca/farmacología
14.
Artículo en Inglés | MEDLINE | ID: mdl-33519946

RESUMEN

Pinus thunbergii Parl. (PTP) has traditionally been used for edible and medicinal purposes to treat several disorders, including diabetes and neuralgia. Therefore, this study sought to evaluate the inhibitory effects of PTP leaf ethanol extracts on acute inflammation. Moreover, the reactive oxygen species (ROS) scavenging activity, superoxide dismutase (SOD) activity, lipopolysaccharide (LPS)-induced nitric oxide (NO) generation, and H2O2-induced lipid peroxidation capacity of PTP were assessed in vitro in RAW 264.7 macrophages. Our results suggest that PTP prevents cell damage caused by oxidative free radicals and downregulates the expression of LPS-induced inflammation-associated factors including inducible nitric oxidase synthetase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2). PTP inhibited NO production by 53.5% (P < 0.05) and iNOS expression by 71.5% (P < 0.01) at 100 µg/mL. PTP at 100 µg/mL also inhibited ROS generation by 58.2% (P < 0.01) and SOD activity by 29.3%, as well as COX-2 expression by 83.3% (P < 0.01) and PGE2 expression by 98.6% (P < 0.01). The anti-inflammatory effects of PTP were confirmed in vivo using an arachidonic acid (AA)-induced ear edema mouse model. Ear thickness and myeloperoxidase (MPO) activity were evaluated as indicators of inflammation. PTP inhibited edema formation by 64.5% (P < 0.05) at 1.0 mg/ear. A total of 16 metabolites were identified in PTP extracts and categorized into subgroups, including two phenolic acids (mainly quinic acid), seven flavonoids, five lignans, one sesquiterpenoid, and one long-chain fatty acid. Therefore, our results suggest that PTP possesses anti-inflammatory properties.

15.
J Med Food ; 24(1): 18-27, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33290158

RESUMEN

Alcohol induces liver injury related to oxidative stress and inflammatory responses. The purpose of this study was to investigate the hepatoprotective effect of Humulus japonicus extract (HJE) against alcohol-induced liver injury. Furthermore, we investigated the mechanisms of the protective effect of HJE on alcohol-induced liver injury. The pretreatment of HJE decreased the levels of aspartate aminotransferase, alanine aminotransferase, triglyceride, and total cholesterol in the plasma, suppressed the malondialdehyde, myeloperoxidase, and enhanced the activities of superoxide dismutase, glutathione, and catalase. The inhibitory effect of HJE against oxidative stress may be associated with the upregulation of nuclear factor erythroid 2-related factor 2 and its target gene heme oxygenase-1. Moreover, HJE inhibited the pro-inflammatory cytokines (tumor necrosis factor alpha, interleukin-1 beta) by downregulating toll-like receptor 4, myeloid differentiation primary response 88, and nuclear factor kappa B p65. These findings provide evidence for the elucidation of the hepatoprotective mechanisms for HJE.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Humulus/química , Factor 88 de Diferenciación Mieloide/metabolismo , Extractos Vegetales/uso terapéutico , Receptor Toll-Like 4/metabolismo , Factor de Transcripción ReIA/metabolismo , Alanina Transaminasa/metabolismo , Animales , Hemo Oxigenasa (Desciclizante)/metabolismo , Hígado/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Ratas , Transducción de Señal
16.
Pharmazie ; 75(12): 656-661, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33303060

RESUMEN

Our aim was to assess the feasibility of transdermal delivery of donepezil and evaluate the pharmacokinetics (PK), pharmacodynamics (PD), and safety of donepezil patch in vitro and in vivo. Donepezil patches were applied to the skin of rabbits and humans for 7 days, then, the PK profiles were observed in a dose-dependent manner. Donepezil was continuously released from the patch for 7 days as compared to oral administration in hairless rats and rabbits. In hairless rats, peak acetylcholinesterase (AChE) inhibition of 34.7±2.0% was observed within 8 h after oral administration of 4 mg/head donepezil, and lasted for less than 24 h, consistent with changes in the plasma donepezil concentration. Peak AChE inhibition by the donepezil patch was equivalent to that in the orally administered group. Donepezil was released continuously from the patch for 7 days with a linear PK in both rats and rabbits. AChE activity inhibition was dependent on donepezil plasma concentration. The data exhibited excellent PK/PD correlation. There was no dermal irritation (erythema/edema) in placebo or donepezil patch group during the study period in minipigs. Thus, Dong-A's donepezil patch appeared to be generally safe and was well tolerated.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Donepezilo/farmacología , Parche Transdérmico , Administración Cutánea , Animales , Inhibidores de la Colinesterasa/administración & dosificación , Inhibidores de la Colinesterasa/farmacocinética , Donepezilo/administración & dosificación , Donepezilo/farmacocinética , Humanos , Masculino , Conejos , Ratas , Piel/efectos de los fármacos , Porcinos , Porcinos Enanos
17.
Korean J Physiol Pharmacol ; 24(5): 385-394, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830145

RESUMEN

Eupatilin is known to possess anti-apoptotic, anti-oxidative, and antiinflammatory properties. We report here that eupatilin has a protective effect on the ethanol-induced injury in rats. Sprague-Dawley rats were divided into 6 groups: control, vehicle, silymarin, eupatilin 10 mg/kg, eupatilin 30 mg/kg, and eupatilin 100 mg/kg. Plasma levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were analyzed to determine the extent of liver damage. Total cholesterol (TC) and triglycerides (TG) were analyzed to determine the level of liver steatosis. Malondialdehyde level, superoxide dismutase (SOD) activity, and glutathione (GSH) level were analyzed to determine the extent of oxidative stress. Tumor necrosis factor (TNF)-α and interleukin (IL)-1ß were quantified to verify the degree of inflammation. Based on our findings, chronic alcohol treatment significantly changed the serum indexes and liver indicators of the model rats, which were significantly improved by eupatilin treatment. Rats in the eupatilin-treatment group showed reduced levels of AST, ALT, TG, TC, TNF-α, and IL-1ß, increased SOD activity and GSH levels, and improved overall physiology compared to the alcoholic liver disease model rats. H&E staining also verified the eupatilin-mediated improvement in liver injury. In conclusion, eupatilin inhibits alcohol-induced liver injury via its antioxidant and anti-inflammatory effects.

18.
Arch Pharm Res ; 43(6): 666-675, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32607942

RESUMEN

Dysfunction of gastrointestinal (GI) motility is a common complication in patients with diabetes mellitus (DM). Studies related to changes in fundus contraction induced by inhibitors in DM are not well known. Therefore, this study aimed to investigate the signaling pathways involved in the changes in the contraction of fundus smooth muscle obtained from control and DM rats. DM was induced by injecting streptozotocin (65 mg/kg) into Sprague-Dawley rats. The rats were sacrificed after 14 days. Fundus smooth muscle contraction was stimulated using electrical field stimulation (amplitude, 50 V; duration, 1 min; frequency, 2-20 Hz) and acetylcholine (0.1 mM). The inhibitor-mediated cell membrane was pre-treated with atropine, verapamil, methysergide, ketanserin, ondansetron, and GR 113808. Inhibitors related to intracellular signaling, such as U73122, chelerythrine, L-NNA, were also used. ML-9 and Y-27632 were identified as inhibitors of factors of myosin light chain (MLC). The contractility was observed to be lower in the DM group than in the control group. Further, the activities of phospholipase C (PLC), protein kinase C (PKC), and myosin light chain kinase (MLCK) were decreased in the DM group. DM reduced the activity of PLC, PKC, and MLCK, which resulted in a decrease in the contractility of the fundus smooth muscle. Therefore, our results present the mechanism of this DM-mediated GI disorder.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Fundus Gástrico/metabolismo , Músculo Liso/metabolismo , Transducción de Señal , Animales , Membrana Celular/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Masculino , Contracción Muscular , Ratas , Ratas Sprague-Dawley , Estreptozocina/administración & dosificación
19.
Biomol Ther (Seoul) ; 28(4): 328-336, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32126734

RESUMEN

Diabetes mellitus affects the colonic motility developing gastrointestinal symptoms, such as constipation. The aim of the study was to examine the role of intracellular signaling pathways contributing to colonic dysmotility in diabetes mellitus. To generate diabetes mellitus, the rats were injected by a single high dose of streptozotocin (65 mg/kg) intraperitoneally. The proximal colons from both normal and diabetic rats were contracted by applying an electrical field stimulation with pulse voltage of 40 V in amplitude and pulse duration of 1 ms at frequencies of 1, 2, 4, and 6 Hz. The muscle strips from both normal rats and rats with diabetes mellitus were pretreated with different antagonists and inhibitors. Rats with diabetes mellitus had lower motility than the control group. There were significant differences in the percentage of inhibition of contraction between normal rats and rats with diabetes mellitus after the incubation of tetrodotoxin (neuronal blocker), atropine (muscarinic receptor antagonist), prazosin (α1 adrenergic receptor antagonist), DPCPX (adenosine A1 receptor antagonist), verapamil (L-type Ca2+ channel blocker), U73122 (PLC inhibitor), ML-9 (MLCK inhibitor), udenafil (PDE5 inhibitor), and methylene blue (guanylate cyclase inhibitor). The protein expression of p-MLC and PDE5 were decreased in the diabetic group compared to the normal group. These results showed that the reduced colonic contractility resulted from the impaired neuronal conduction and decreased muscarinic receptor sensitivity, which resulted in decreased phosphorylation of MLC via MLCK, and cGMP activity through PDE5.

20.
Biomol Ther (Seoul) ; 28(2): 202-210, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31522488

RESUMEN

Fluoxetine is used widely as an antidepressant for the treatment of cancer-related depression, but has been reported to also have anti-cancer activity. In this study, we investigated the cytotoxicity of fluoxetine to human gastric adenocarcinoma cells; as shown by the MTT assay, fluoxetine induced cell death. Subsequently, cells were treated with 10 or 20 µM fluoxetine for 24 h and analyzed. Apoptosis was confirmed by the increased number of early apoptotic cells, shown by Annexin V- propidium iodide staining. Nuclear condensation was visualized by DAPI staining. A significant increase in the expression of cleaved PARP was observed by western blotting. The pan-caspase inhibitor Z-VAD-FMK was used to detect the extent of caspase-dependent cell death. The induction of autophagy was determined by the formation of acidic vesicular organelles (AVOs), which was visualized by acridine orange staining, and the increased expression of autophagy markers, such as LC3B, Beclin 1, and p62/SQSTM 1, observed by western blotting. The expression of upstream proteins, such as p-Akt and p-mTOR, were decreased. Autophagic degradation was evaluated by using bafilomycin, an inhibitor of late-stage autophagy. Bafilomycin did not significantly enhance LC3B expression induced by fluoxetine, which suggested autophagic degradation was impaired. In addition, the co-administration of the autophagy inhibitor 3-methyladenine and fluoxetine significantly increased fluoxetine-induced apoptosis, with decreased p-Akt and markedly increased death receptor 4 and 5 expression. Our results suggested that fluoxetine simultaneously induced both protective autophagy and apoptosis and that the inhibition of autophagy enhanced fluoxetine-induced apoptosis through increased death receptor expression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...