Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anim Cells Syst (Seoul) ; 28(1): 272-282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741948

RESUMEN

Unlike vertebrates, the number of toothed taxa in invertebrates is very few, with leeches being the only tooth-bearing organisms in the phylum Annelida. Copious studies have been conducted regarding vertebrate teeth; however, studies regarding the structure and function of invertebrate teeth are limited. In this study, the tooth structure of leeches, specifically Hirudo nipponia and Haemadipsa rjukjuana, was revealed, which showed sharp and pointed teeth along the apex of three jaws. Understanding conserved signaling regulations among analogous organs is crucial for uncovering the underlying mechanisms during organogenesis. Therefore, to shed light on the evolutionary perspective of odontogenesis to some extent, we conducted de novo transcriptome analyses using embryonic mouse tooth germs, Hirudo teeth, and Helobdella proboscises to identify conserved signaling molecules involved in tooth development. The selection criteria were particularly based on the presence of tooth-related genes in mice, Hirudo teeth, and Helobdella proboscis, wherein 4113 genes were commonly expressed in all three specimens. Furthermore, the chemical nature of leech teeth was also examined via TEM-EDS to compare the chemical composition with vertebrate teeth. The examination of tissue-specific genetic information and chemical nature between leeches and mice revealed chemical similarities between leech and mice teeth, as well as conserved signaling molecules involved in tooth formation, including Ptpro, Prickle2, and Wnt16. Based on our findings, we propose that leech teeth express signaling molecules conserved in mice and these conserved tooth-specific signaling for dental hard tissue formation in mice would corresponds to the structural formation of the toothed jaw in leeches.

2.
Front Cell Dev Biol ; 12: 1369634, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756696

RESUMEN

Introduction: Prohibitin (PHB) is an essential scaffold protein that modulates signaling pathways controlling cell survival, metabolism, inflammation, and bone formation. However, its specific role in periodontium development remains less understood. This study aims to elucidate the expression pattern and function of PHB in periodontium development and its involvement in alveolar bone formation. Methods: Immunolocalization of PHB in the periodontium of postnatal (PN) mice were examined. Phb morpholino was micro-injected into the right-side mandible at PN5, corresponding to the position where the alveolar bone process forms in relation to the lower first molar. The micro-injection with a scramble control (PF-127) and the left-side mandibles were used as control groups. Five days post-micro-injection, immunohistochemical analysis and micro-CT evaluation were conducted to assess bone mass and morphological changes. Additionally, expression patterns of signaling molecules were examined following Phb downregulation using 24-h in vitro cultivation of developing dental mesenchyme at E14.5. Results: The immunostaining of PHB showed its localization in the periodontium at PN5, PN8, and PN10. The in vitro cultivation of dental mesenchyme resulted in alterations in Bmps, Runx2, and Wnt signalings after Phb knock-down. At 5 days post-micro-injection, Phb knocking down showed weak immunolocalizations of runt-related transcription factor (RUNX2) and osteocalcin (OCN). However, knocking down Phb led to histological alterations characterized by decreased bone mass and stronger localizations of Ki67 and PERIOSTIN in the periodontium compared 1 to control groups. The micro-CT evaluation showed decreased bone volume and increased PDL space in the Phb knock-down specimens, suggesting its regulatory role in bone formation. Discussion: The region-specific localization of PHB in the margin where alveolar bone forms suggests its involvement in alveolar bone formation and the differentiation of the periodontal ligament. Overall, our findings suggest that Phb plays a modulatory role in alveolar bone formation by harmoniously regulating bone-forming-related signaling molecules during periodontium development.

3.
Cell Tissue Res ; 395(1): 53-62, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985496

RESUMEN

Glomerular epithelial protein-1 (Glepp1), a R3 subtype family of receptor-type protein tyrosine phosphatases, plays important role in the activation of Src family kinases and regulates cellular processes such as cell proliferation, differentiation, and apoptosis. In this study, we firstly examined the functional evaluation of Glepp1 in tooth development and morphogenesis. The precise expression level and developmental function of Glepp1 were examined by RT-qPCR, in situ hybridization, and loss and gain of functional study using a range of in vitro organ cultivation methods. Expression of Glepp1 was detected in the developing tooth germs in cap and bell stage of tooth development. Knocking down Glepp1 at E13 for 2 days showed the altered expression levels of tooth development-related signaling molecules, including Bmps, Dspp, Fgf4, Lef1, and Shh. Moreover, transient knock down of Glepp1 revealed alterations in cellular physiology, examined by the localization patterns of Ki67 and E-cadherin. Similarly, knocking down of Glepp1 showed disrupted enamel rod and interrod formation in 3-week renal transplanted teeth. In addition, due to attrition of odontoblastic layers, the expression signals of Dspp and the localization of NESTIN were almost not detected after knock down of Glepp1; however, their expressions were increased after Glepp1 overexpression. Thus, our results suggested that Glepp1 plays modulating roles during odontogenesis by regulating the expression levels of signaling molecules and cellular events to achieve the proper structural formation of hard tissue matrices in mice molar development.


Asunto(s)
Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores , Diente , Animales , Ratones , Regulación del Desarrollo de la Expresión Génica , Morfogénesis , Odontogénesis , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Transducción de Señal , Diente/metabolismo
4.
J Cell Physiol ; 239(1): 112-123, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38149778

RESUMEN

Lipid biosynthesis is recently studied its functions in a range of cellular physiology including differentiation and regeneration. However, it still remains to be elucidated in its precise function. To reveal this, we evaluated the roles of lysophosphatidic acid (LPA) signaling in alveolar bone formation using the LPA type 2 receptor (LPAR2) antagonist AMG-35 (Amgen Compound 35) using tooth loss without periodontal disease model which would be caused by trauma and usually requires a dental implant to restore masticatory function. In this study, in vitro cell culture experiments in osteoblasts and periodontal ligament fibroblasts revealed cell type-specific responses, with AMG-35 modulating osteogenic differentiation in osteoblasts in vitro. To confirm the in vivo results, we employed a mouse model of tooth loss without periodontal disease. Five to 10 days after tooth extraction, AMG-35 facilitated bone formation in the tooth root socket as measured by immunohistochemistry for differentiation markers KI67, Osteocalcin, Periostin, RUNX2, transforming growth factor beta 1 (TGF-ß1) and SMAD2/3. The increased expression and the localization of these proteins suggest that AMG-35 elicits osteoblast differentiation through TGF-ß1 and SMAD2/3 signaling. These results indicate that LPAR2/TGF-ß1/SMAD2/3 represents a new signaling pathway in alveolar bone formation and that local application of AMG-35 in traumatic tooth loss can be used to facilitate bone regeneration and healing for further clinical treatment.


Asunto(s)
Lisofosfolípidos , Osteogénesis , Receptores Lisofosfolípidos , Pérdida de Diente , Animales , Ratones , Diferenciación Celular/fisiología , Lisofosfolípidos/metabolismo , Osteoblastos/metabolismo , Ligamento Periodontal/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Receptores Lisofosfolípidos/metabolismo
5.
J Cell Physiol ; 238(7): 1520-1529, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37098720

RESUMEN

To understand the mechanisms underlying tooth morphogenesis, we examined the developmental roles of important posttranslational modification, O-GlcNAcylation, which regulates protein stability and activity by the addition and removal of a single sugar (O-GlcNAc) to the serine or threonine residue of the intracellular proteins. Tissue and developmental stage-specific immunostaining results against O-GlcNAc and O-GlcNAc transferase (OGT) in developing tooth germs would suggest that O-GlcNAcylation is involved in tooth morphogenesis, particularly in the cap and secretory stage. To evaluate the developmental function of OGT-mediated O-GlcNAcylation, we employed an in vitro tooth germ culture method at E14.5, cap stage before secretory stage, for 1 and 2 days, with or without OSMI-1, a small molecule OGT inhibitor. To examine the mineralization levels and morphological changes, we performed renal capsule transplantation for one and three weeks after 2 days of in vitro culture at E14.5 with OSMI-1 treatment. After OGT inhibition, morphological and molecular alterations were examined using histology, immunohistochemistry, real-time quantitative polymerase chain reaction, in situ hybridization, scanning electron microscopy, and ground sectioning. Overall, inhibition of OGT resulted in altered cellular physiology, including proliferation, apoptosis, and epithelial rearrangements, with significant changes in the expression patterns of ß-catenin, fibroblast growth factor 4 (fgf4), and sonic hedgehog (Shh). Moreover, renal capsule transplantation and immunolocalizations of Amelogenin and Nestin results revealed that OGT-inhibited tooth germs at cap stage exhibited with structural changes in cuspal morphogenesis, amelogenesis, and dentinogenesis of the mineralized tooth. Overall, we suggest that OGT-mediated O-GlcNAcylation regulates cell signaling and physiology in primary enamel knot during tooth development, thus playing an important role in mouse molar morphogenesis.


Asunto(s)
N-Acetilglucosaminiltransferasas , Diente , Animales , Ratones , Apoptosis/fisiología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Diente/crecimiento & desarrollo , Diente/metabolismo
6.
Histochem Cell Biol ; 159(6): 477-487, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36814002

RESUMEN

Mechanically activated factors are important in organogenesis, especially in the formation of secretory organs, such as salivary glands. Piezo-type mechanosensitive ion channel component 1 (Piezo1), although previously studied as a physical modulator of the mechanotransduction, was firstly evaluated on its developmental function in this study. The detailed localization and expression pattern of Piezo1 during mouse submandibular gland (SMG) development were analyzed using immunohistochemistry and RT-qPCR, respectively. The specific expression pattern of Piezo1 was examined in acinar-forming epithelial cells at embryonic day 14 (E14) and E16, which are important developmental stages for acinar cell differentiation. To understand the precise function of Piezo1 in SMG development, siRNA against Piezo1 (siPiezo1) was employed as a loss-of-function approach, during in vitro organ cultivation of SMG at E14 for the designated period. Alterations in the histomorphology and expression patterns of related signaling molecules, including Bmp2, Fgf4, Fgf10, Gli1, Gli3, Ptch1, Shh, and Tgfß-3, were examined in acinar-forming cells after 1 and 2 days of cultivation. Particularly, altered localization patterns of differentiation-related signaling molecules including Aquaporin5, E-cadherin, Vimentin, and cytokeratins would suggest that Piezo1 modulates the early differentiation of acinar cells in SMGs by modulating the Shh signaling pathway.


Asunto(s)
Mecanotransducción Celular , Glándula Submandibular , Ratones , Animales , Glándula Submandibular/metabolismo , Glándulas Salivales , Morfogénesis/fisiología , Diferenciación Celular , Canales Iónicos/metabolismo
7.
Front Physiol ; 13: 987625, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277197

RESUMEN

Periodontitis is an excessive inflammatory event in tooth-supporting tissues and can cause tooth loss. We used erythropoietin (EPO), which has been reported to play an important role in bone healing and modulation of angiogenesis, as a therapeutic agent in vivo and in vitro experimental models to analyze its effect on periodontitis. First, EPO was applied to in vitro MC3T3-E1 cells and human periodontal ligament fibroblast (hPDLF) cells to examine its function in altered cellular events and gene expression patterns. In vitro cultivation of MC3T3-E1 and hPDLF cells with 10 IU/ml EPO at 24 and 48 h showed an obvious increase in cell proliferation. Interestingly, EPO treatment altered the expression of osteogenesis-related molecules, including alkaline phosphatase (ALP), bone morphogenetic protein-2 (BMP-2), and osteocalcin (OC) in MC3T3-E1 cells but not in hPDLF cells. In particular, MC3T3-E1 cells showed increased expression of ALP, BMP-2, and OC on day 5, while hPDLF cells showed increased expression of BMP-2, and OC on day 14. Based on the in vitro examination, we evaluated the effect of EPO on bone formation using an experimentally-induced animal periodontitis model. After the induction of periodontitis in the maxillary left second M, 10 IU/ml of EPO was locally applied to the extraction tooth sockets. Histomorphological examination using Masson's trichrome (MTC) staining showed facilitated bone formation in the EPO-treated groups after 14 days. Similarly, stronger positive reactions against vascular endothelial growth factor (VEGF), cluster of differentiation 31 (CD31), runt-related transcription factor 2 (RUNX2), and osteocalcin (OC) were detected in the EPO-treated group compared to the control. Meanwhile, myeloperoxidase, an inflammatory marker, was decreased in the EPO-treated group on days 1 and 5. Overall, EPO facilitates bone healing and regeneration through altered signaling regulation and modulation of inflammation in the osteoblast cell lineage and to a lesser extent in hPDLF cells.

8.
Genes Genomics ; 44(10): 1181-1189, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35951154

RESUMEN

BACKGROUND: The tongue is a muscular fleshy organ in the oral cavity that is anatomically divided into the dorsal, ventral, anterior, and posterior part. The intricate tissue organisation and diverse origins of the tongue make it a complex organ of the oral cavity. OBJECTIVES: To reveal the signalling molecules involved in the formation of the dorsal and ventral parts of the tongue through microarray analysis. METHODS: Dorsal and ventral tongue tissues were isolated from embryonic day 14 mice by micro-dissection. RNA was extracted from the dorsal and ventral tongue tissues separately for microarray analysis. Microarray data were confirmed by quantitative reverse transcription polymerase chain reaction and whole-mount in situ hybridisation. RESULTS: Microarray analysis revealed expression of 33,793 genes. Of these, 931 genes were found to be equally expressed in both the dorsal and ventral parts of the tongue. On limiting the fold-change cut-off to over 1.5-fold, 725 genes were expressed over 1.5-fold in the ventral part and 1,672 in the dorsal part of the tongue. The qPCR and whole-mount in situ hybridisation revealed the expressions of angiopoietin 2 (Angpt2), fibroblast growth factor 18 (Fgf18), mesenchyme homeobox gene1 (Meox1), and SPARC-related modular calcium binding 2 (Smoc2) in the ventral part of the tongue. CONCLUSIONS: Numerous signalling molecules can be selected from our microarray results to examine their roles in tongue development and disease model systems. In the near future, the selection of candidate genes and their functional evaluations will be performed through loss- and gain-of-function mutation studies.


Asunto(s)
Angiopoyetina 2 , Calcio , Animales , Ratones , Organogénesis , ARN , Lengua
9.
Front Physiol ; 13: 885593, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600310

RESUMEN

For hard tissue formation, cellular mechanisms, involved in protein folding, processing, and secretion play important roles in the endoplasmic reticulum (ER). In pathological and regeneration conditions, ER stress hinders proper formation and secretion of proteins, and tissue regeneration by unfolded protein synthesis. 4-Phenylbutyric acid (4PBA) is a chemical chaperone that alleviates ER stress through modulation in proteins folding and protein trafficking. However, previous studies about 4PBA only focused on the metabolic diseases rather than on hard tissue formation and regeneration. Herein, we evaluated the function of 4PBA in dentin regeneration using an exposed pulp animal model system via a local delivery method as a drug repositioning strategy. Our results showed altered morphological changes and cellular physiology with histology and immunohistochemistry. The 4PBA treatment modulated the inflammation reaction and resolved ER stress in the early stage of pulp exposure. In addition, 4PBA treatment activated blood vessel formation and TGF-ß1 expression in the dentin-pulp complex. Micro-computed tomography and histological examinations confirmed the facilitated formation of the dentin bridge in the 4PBA-treated specimens. These results suggest that proper modulation of ER stress would be an important factor for secretion and patterned formation in dentin regeneration.

10.
Front Physiol ; 13: 1079355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685173

RESUMEN

Introduction: During tooth development, proper protein folding and trafficking are significant processes as newly synthesized proteins proceed to form designated tissues. Endoplasmic reticulum (ER) stress occurs inevitably in tooth development as unfolded and misfolded proteins accumulate in ER. 4-Phenylbutyric acid (4PBA) is a FDA approved drug and known as a chemical chaperone which alleviates the ER stress. Recently, several studies showed that 4PBA performs therapeutic effects in some genetic diseases due to misfolding of proteins, metabolic related-diseases and apoptosis due to ER stress. However, the roles of 4PBA during odontogenesis are not elucidated. This study revealed the effects of 4PBA during molar development in mice. Methods: We employed in vitro organ cultivation and renal transplantation methods which would mimic the permanent tooth development in an infant period of human. The in vitro cultivated tooth germs and renal calcified teeth were examined by histology and immunohistochemical analysis. Results and Discussion: Our results revealed that treatment of 4PBA altered expression patterns of enamel knot related signaling molecules, and consequently affected cellular secretion and patterned formation of dental hard tissues including dentin and enamel during tooth morphogenesis. The alteration of ER stress by 4PBA treatment during organogenesis would suggest that proper ER stress is important for pattern formation during tooth development and morphogenesis, and 4PBA as a chemical chaperone would be one of the candidate molecules for dental and hard tissue regeneration.

11.
Front Physiol ; 12: 773878, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955887

RESUMEN

Apigenin, a natural product belonging to the flavone class, affects various cell physiologies, such as cell signaling, inflammation, proliferation, migration, and protease production. In this study, apigenin was applied to mouse molar pulp after mechanically pulpal exposure to examine the detailed function of apigenin in regulating pulpal inflammation and tertiary dentin formation. In vitro cell cultivation using human dental pulp stem cells (hDPSCs) and in vivo mice model experiments were employed to examine the effect of apigenin in the pulp and dentin regeneration. In vitro cultivation of hDPSCs with apigenin treatment upregulated bone morphogenetic protein (BMP)- and osteogenesis-related signaling molecules such as BMP2, BMP4, BMP7, bone sialoprotein (BSP), runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN) after 14 days. After apigenin local delivery in the mice pulpal cavity, histology and cellular physiology, such as the modulation of inflammation and differentiation, were examined using histology and immunostainings. Apigenin-treated specimens showed period-altered immunolocalization patterns of tumor necrosis factor (TNF)-α, myeloperoxidase (MPO), NESTIN, and transforming growth factor (TGF)-ß1 at 3 and 5 days. Moreover, the apigenin-treated group showed a facilitated dentin-bridge formation with few irregular tubules after 42 days from pulpal cavity preparation. Micro-CT images confirmed obvious dentin-bridge structures in the apigenin-treated specimens compared with the control. Apigenin facilitated the reparative dentin formation through the modulation of inflammation and the activation of signaling regulations. Therefore, apigenin would be a potential therapeutic agent for regenerating dentin in exposed pulp caused by dental caries and traumatic injury.

12.
Front Cell Dev Biol ; 9: 697243, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34513833

RESUMEN

miRNAs are conserved short non-coding RNAs that play a role in the modulation of various biological pathways during tissue and organ morphogenesis. In this study, the function of miRNA-221-3p in tooth development, through its loss or gain in function was evaluated. A variety of techniques were utilized to evaluate detailed functional roles of miRNA-221-3p during odontogenesis, including in vitro tooth cultivation, renal capsule transplantation, in situ hybridization, real-time PCR, and immunohistochemistry. Two-day in vitro tooth cultivation at E13 identified altered cellular events, including cellular proliferation, apoptosis, adhesion, and cytoskeletal arrangement, with the loss and gain of miRNA-221-3p. qPCR analysis revealed alterations in gene expression of tooth-related signaling molecules, including ß-catenin, Bmp2, Bmp4, Fgf4, Ptch1, and Shh, when inhibited with miRNA-221-3p and mimic. Also, the inhibition of miRNA-221-3p demonstrated increased mesenchymal localizations of pSMAD1/5/8, alongside decreased expression patterns of Shh and Fgf4 within inner enamel epithelium (IEE) in E13 + 2 days in vitro cultivated teeth. Moreover, 1-week renal transplantation of in vitro cultivated teeth had smaller tooth size with reduced enamel and dentin matrices, along with increased cellular proliferation and Shh expression along the Hertwig epithelial root sheath (HERS), within the inhibitor group. Similarly, in 3-week renal calcified teeth, the overexpression of miRNA-221-3p did not affect tooth phenotype, while the loss of function resulted in long and slender teeth with short mesiodistal length. This study provides evidence that a suitable level of miRNA-221-3p is required for the modulation of major signaling pathways, including Wnt, Bmp, and Shh, during tooth morphogenesis.

13.
J Periodontal Res ; 56(4): 735-745, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33682929

RESUMEN

OBJECTIVE: To evaluate the effect of resveratrol on periodontal bone regeneration after local delivery and to determine its effect on inflammatory mediators. BACKGROUND: Resveratrol is considered an anti-inflammatory polyphenolic stilbene involved in the modulation of inflammation. MATERIALS AND METHODS: Periodontitis was induced in mouse molars using a 5-day ligature model followed by the left second molar extraction and 50 µM resveratrol treatment for 1 and 2 weeks. We then examined specimens treated for 1 week histologically and with immunostaining. Microfocus-computed tomography (micro-CT) was used to examine the bone volume formation. RESULTS: After 1 week of treatment, proinflammatory cytokine levels (TNF-alpha and IL6), cells exhibiting neutrophil and macrophage marker (MPO), cell proliferation marker (Ki67), and preosteoblastic marker (RUNX2) reactivity decreased in the resveratrol-treated specimens compared to the control group. In contrast, we observed a higher number of CD31-, F4/80-, and osteocalcin- (OCN-) positive cells in the resveratrol-treated specimens. After 2 weeks, micro-CT confirmed an increased bone mass in the region of the extraction socket in the resveratrol-treated group. CONCLUSION: After 1 week, the resveratrol-treated specimens revealed evidence of inflammation modulation compared to the control group. These data suggest that resveratrol not only affects inflammation control but also is useful for treating periodontitis-related tissue defects and bone regeneration.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Pérdida de Hueso Alveolar/diagnóstico por imagen , Pérdida de Hueso Alveolar/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Ratones , Osteogénesis , Periodontitis/diagnóstico por imagen , Periodontitis/tratamiento farmacológico , Resveratrol
14.
J Mol Histol ; 52(2): 313-320, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33420594

RESUMEN

Circumvallate papilla (CVP) is a distinctively structured with dome-shaped apex, and the surrounding trench which contains over two hundred taste buds on the lateral walls. Although CVP was extensively studied to determine the regulatory mechanisms during organogenesis, it still remains to be elucidated the principle mechanisms of signaling regulations on morphogenesis including taste buds formation. The key role of Yes-associated protein (YAP) in the regulation of organ size and cell proliferation in vertebrates is well understood, but little is known about the role of this signaling pathway in CVP development. We aimed to determine the putative roles of YAP signaling in the epithelial patterning during CVP morphogenesis. To evaluate the precise localization patterns of YAP and other related signaling molecules, including ß-catenin, Ki67, cytokeratins, and PGP9.5, in CVP tissue, histology and immunohistochemistry were employed at E16 and adult mice. Our results suggested that there are specific localization patterns of YAP and Wnt signaling molecules in developing and adult CVP. These concrete localization patterns would provide putative involvements of YAP and Wnt signaling for proper epithelial cell differentiation including the formation and maintenance of taste buds.


Asunto(s)
Papilas Gustativas/citología , Papilas Gustativas/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Femenino , Técnicas In Vitro , Antígeno Ki-67/metabolismo , Ratones , Organogénesis/genética , Organogénesis/fisiología , Embarazo , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas Señalizadoras YAP/genética
15.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33218046

RESUMEN

In the present study, we examined the bone healing capacity of Meox2, a homeobox gene that plays essential roles in the differentiation of a range of developing tissues, and identified its putative function in palatogenesis. We applied the knocking down of Meox2 in human periodontal ligament fibroblasts to examine the osteogenic potential of Meox2. Additionally, we applied in vivo periodontitis induced experiment to reveal the possible application of Meox2 knockdown for 1 and 2 weeks in bone healing processes. We examined the detailed histomorphological changes using Masson's trichrome staining and micro-computed tomography evaluation. Moreover, we observed the localization patterns of various signaling molecules, including α-SMA, CK14, IL-1ß, and MPO to examine the altered bone healing processes. Furthermore, we investigated the process of bone formation using immunohistochemistry of Osteocalcin and Runx2. On the basis of the results, we suggest that the knocking down of Meox2 via the activation of osteoblast and modulation of inflammation would be a plausible answer for bone regeneration as a gene therapy. Additionally, we propose that the purpose-dependent selection and application of developmental regulation genes are important for the functional regeneration of specific tissues and organs, where the pathological condition of tooth loss lesion would be.


Asunto(s)
Regeneración Ósea , Fibroblastos/metabolismo , Proteínas de Homeodominio/metabolismo , Ligamento Periodontal/metabolismo , Pérdida de Diente/metabolismo , Animales , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/genética , Humanos , Masculino , Ratones , Transducción de Señal , Pérdida de Diente/genética
16.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138041

RESUMEN

FUSE binding protein 1 (Fubp1), a regulator of the c-Myc transcription factor and a DNA/RNA-binding protein, plays important roles in the regulation of gene transcription and cellular physiology. In this study, to reveal the precise developmental function of Fubp1, we examined the detailed expression pattern and developmental function of Fubp1 during tooth morphogenesis by RT-qPCR, in situ hybridization, and knock-down study using in vitro organ cultivation methods. In embryogenesis, Fubp1 is obviously expressed in the enamel organ and condensed mesenchyme, known to be important for proper tooth formation. Knocking down Fubp1 at E14 for two days, showed the altered expression patterns of tooth development related signalling molecules, including Bmps and Fgf4. In addition, transient knock-down of Fubp1 at E14 revealed changes in the localization patterns of c-Myc and cell proliferation in epithelium and mesenchyme, related with altered tooth morphogenesis. These results also showed the decreased amelogenin and dentin sialophosphoprotein expressions and disrupted enamel rod and interrod formation in one- and three-week renal transplanted teeth respectively. Thus, our results suggested that Fubp1 plays a modulating role during dentinogenesis and amelogenesis by regulating the expression pattern of signalling molecules to achieve the proper structural formation of hard tissue matrices and crown morphogenesis in mice molar development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/citología , Regulación del Desarrollo de la Expresión Génica , Morfogénesis , Odontogénesis , Proteínas de Unión al ARN/metabolismo , Diente/embriología , Animales , Proliferación Celular , Proteínas de Unión al ADN/genética , Embrión de Mamíferos/metabolismo , Ratones , Ratones Endogámicos ICR , Proteínas de Unión al ARN/genética , Transducción de Señal , Diente/metabolismo
17.
Gene Expr Patterns ; 37: 119130, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32758541

RESUMEN

The endoplasmic reticulum (ER) is a site where protein folding and posttranslational modifications occur, but when unfolded or misfolded proteins accumulate in the ER lumen, an unfolded protein response (UPR) occurs. A UPR activates ER-stress signalling genes, including inositol-requiring enzyme-1 (Ire1), activating transcription factor 6 (Atf6), and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (Perk), to maintain homeostasis. The involvement of ER stress molecules in metabolic disease and hard tissue matrix formation has been established; however, an understanding of the role of ER-stress signalling molecules in tooth development is lacking. The aims of this study are to define the stage-specific expression patterns of ER stress-related molecules and to elucidate their putative functions in the organogenesis of teeth. This study leverages knowledge of the tissue morphology and expression patterns of a range of signalling molecules during tooth development. RT-qPCR, in situ hybridization, and immunohistochemistry analyses were performed to determine the stage-specific expression patterns of ER-stress-related signalling molecules at important stages of tooth development. RT-qPCR analyses showed that Atf6 and Perk have similar expression levels during all stages of tooth development; however, the expression levels of Ire1 and its downstream target X-box binding protein (Xbp1) increased significantly from the cap to the secretory stage of tooth development. In situ hybridization results revealed that Atf6 and Xbp1 were expressed in cells that form the enamel knot at cap stage and ameloblasts and odontoblasts at secretory stage in stage-specific patterns. In addition, Atf6, Ire1, and Xbp1 expression exhibited distinct localization patterns in secretory odontoblasts and ameloblasts of PN0 molars. Overall, our results strongly suggest that ER-stress molecules are involved in tooth development in response to protein overload that occurs during signaling modulations from enamel knots at cap stage and extracellular matrix secretion at secretory stage.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Diente Molar/metabolismo , Diente/crecimiento & desarrollo , Diente/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Ratones , Morfogénesis , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Respuesta de Proteína Desplegada
18.
Int J Mol Sci ; 21(15)2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722078

RESUMEN

MicroRNAs (miRNAs) are a class of naturally occurring small non-coding RNAs that post-transcriptionally regulate gene expression in organisms. Most mammalian miRNAs influence biological processes, including developmental changes, tissue morphogenesis and the maintenance of tissue identity, cell growth, differentiation, apoptosis, and metabolism. The miR-206-3p has been correlated with cancer; however, developmental roles of this miRNA are unclear. In this study, we examined the expression pattern and evaluated the developmental regulation of miR-206-3p during tooth morphogenesis using ex-vivo culture method. The expression pattern of miR-206-3p was examined in the epithelium and mesenchyme of developing tooth germ with stage-specific manners. Perturbation of the expression of miR-206-3p clearly altered expression patterns of dental-development-related signaling molecules, including Axin2, Bmp2, Fgf4, Lef1 and Shh. The gene expression complemented with change in cellular events including, apoptosis and proliferation which caused altered crown and pulp morphogenesis in renal-capsule-calcified teeth. Especially, mislocalization of ß-Catenin and SMAD1/5/8 were observed alongside dramatic alterations in the expression patterns of Fgf4 and Shh. Overall, our data suggest that the miR-206-3p regulate the cellular physiology during tooth morphogenesis through modulation of the Wnt, Bmp, Fgf, and Shh signaling pathways to form proper tooth pulp and crown.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Organogénesis , Diente/embriología , Vía de Señalización Wnt , Animales , Ratones , Ratones Endogámicos ICR , MicroARNs/genética
19.
J Periodontal Res ; 55(2): 247-257, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31797379

RESUMEN

BACKGROUND AND OBJECTIVE: After tooth extraction, the extraction socket undergoes several steps of soft and hard tissue healing. The healing process of the extraction socket is modulated by a range of signaling factors and biochemical agents. It has been reported that resveratrol, a polyphenolic compound, exhibits various biological effects, including anti-inflammatory, anti-carcinogenic, antioxidant, and anti-aging effects, and protects cardiovascular and bone tissues. In this study, we examined the cellular effects of resveratrol on human periodontal ligament (hPDL) cells and osteoblast-like (MC3T3-E1) cells and evaluated the bone-healing capacity of tooth extraction sockets in mice. MATERIAL AND METHODS: Resveratrol was applied to hPDL and MC3T3-E1 cells to detect cell proliferation and alkaline phosphatase (ALP) activity, and qPCR was employed to understand the gene expression level in vitro. For in vivo experiment, six-week-old C57BL/6 male mice were randomly divided into control (n = 15) and experimental (n = 15) groups and maxillary first molars were extracted by surgery. Experimental groups received 50-µM resveratrol on extraction sockets and analyzed the degree of new bone formation. RESULTS: Treatment of hPDL and MC3T3-E1 cells with resveratrol increased the cell proliferation and ALP activity and enhanced the expression of ALP, BMP-2, BMP-4, and OC genes. Resveratrol enhanced new bone formation in the lingual extraction socket in mice. CONCLUSION: These results suggest that resveratrol increases the cellular physiology of PDL and osteoblast including their proliferation and differentiation and may play an important role in bone-healing capacity after tooth extraction.


Asunto(s)
Osteoblastos/efectos de los fármacos , Ligamento Periodontal/efectos de los fármacos , Resveratrol/uso terapéutico , Extracción Dental , Alveolo Dental/efectos de los fármacos , Células 3T3 , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Osteogénesis , Ligamento Periodontal/citología , Cicatrización de Heridas
20.
J Cell Physiol ; 234(11): 20354-20365, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30963569

RESUMEN

To understand the role of endoplasmic reticulum (ER)-stress in mice molar development, we studied Tmbim6 that antagonizes the unfolded protein response, using Tmbim6 knockout (KO) mice and in vitro organ cultivation with knocking down using small interfering RNA. During molar development, Tmbim6 is expressed in developing tooth at E14-E16, postnatal0 (PN0), and PN6. Mineral content in Tmbim6 KO enamel was reduced while dentin was slightly increased revealing ultrastructural changes in pattern formation of both enamel and dentin. Moreover, odontoblast differentiation was altered with increased Dspp expression at PN0 followed by altered AMELX localizations at PN5. These results were confirmed by in vitro organ cultivation and showed altered Bmp signaling, proliferation, and actin rearrangement in the presumptive ameloblast and odontoblasts that followed the altered expression of differentiation and ER stress-related signaling molecules at E16.5. Overall, ER stress modulated by Tmbim6 would play important roles in patterned dental hard tissue formation in mice molar within a limited period of development.


Asunto(s)
Diferenciación Celular/genética , Estrés del Retículo Endoplásmico/genética , Proteínas de la Membrana/genética , Diente Molar/metabolismo , Odontoblastos/metabolismo , Ameloblastos/metabolismo , Animales , Proteínas de la Matriz Extracelular/metabolismo , Ratones Noqueados , Sialoglicoproteínas/genética , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...