Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 622: 978-985, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35569411

RESUMEN

Active matter comprises individual energy-consuming components that convert locally stored energy into mechanical motion. Among these, liquid crystal dispersed self-propelled colloids have displayed fascinating dynamic effects and nonequilibrium behaviors. In this work, we introduce a new type of active soft matter based on swimming microalgae and lyotropic nanocellulose liquid crystal. Cellulose is a kind of biocompatible polysaccharide that nontoxic to living biological colloids. In contrast to microalgae locomotion in isotropic and low viscosity media, we demonstrate that the propulsion force of swimming microalgae can overcome the stabilizing elastic force in cholesteric nanocellulose liquid crystal, with the displacement dynamics (gait, direction, frequency, and speed) be altered by the surrounding medium. Simultaneously, the active stress and shear flow exerted by swimming microalgae can introduce local perturbation in surrounding liquid crystal orientation order. The latter effect yields hydrodynamic fluctuations in bulk phase as well as layer undulations, helicoidal axis splay deformation and director bending in the cholesteric assembly, which finally followed by a recovery according to the inherent viscoelasticity of liquid crystal matrix. Our results point to an unorthodox design concept to generate a new type of hybrid soft matter that combines nontoxic cholesteric liquid crystal and active particles, which are expected to open opportunities in biosensing and biomechanical applications.


Asunto(s)
Cristales Líquidos , Microalgas , Coloides/química , Cristales Líquidos/química , Suspensiones , Natación
2.
Sci Adv ; 7(52): eabi8990, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34936459

RESUMEN

It has been recognized that driving matter to nonequilibrium states can lead to emergent behaviors and functionalities. Here, we show that uniform colloidal dispersions can be driven into dissipative nonuniform states with emerging behaviors. We experimentally demonstrate this with electrically driven weakly charged superparamagnetic iron oxide nanoparticles in a nonpolar solvent. The driving leads to formation of nonequilibrium concentration gradients that further translate to nonequilibrium magnetism, including voltage-controlled magnetization and susceptibility. The concentration gradients also serve as diffuse interfaces that respond to external magnetic fields, leading to novel dissipative patterns. We identify the closest nondissipative analogs, discuss the differences, and highlight the ability to directly quantify the dissipation and link it to the pattern formation. Beyond voltage-controlled magnetism, we foresee that the concept can be generalized to other functional colloids to create, e.g., optical, electrical, catalytic, and mechanical responses that are not possible in thermodynamic equilibrium.

3.
Soft Matter ; 17(27): 6675, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34180932

RESUMEN

Correction for 'Chlamydomonas reinhardtii swimming in the Plateau borders of 2D foams' by Oskar Tainio et al., Soft Matter, 2021, 17, 145-152, DOI: 10.1039/D0SM01206H.

4.
Soft Matter ; 17(1): 145-152, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33155584

RESUMEN

Unicellular Chlamydomonas reinhardtii micro-algae cells were inserted into a quasi-2D Hele-Shaw chamber filled with saponin foam. The movement of the algae along the bubble borders was then manipulated and tracked. These self-propelled particles generate flow and stresses in their surrounding matter. In addition, the algae possess the capability of exerting forces that alter bubble boundaries while maintaining an imminent phototactic movement. We find that by controlling the gas fraction of the foam we can change the interaction of the algae and bubbles. Specifically, our data expose three distinct swimming regimes for the algae with respect to the level of confinement due to the Plateau border cross-section: unlimited bulk, transition, and overdamped regimes. At the transition regime we find the speed of the algae to be modeled by a simple force balance equation emerging from the shear inside the Plateau border. Thus, we have shown that it is possible to create an algae-friendly foam while controlling the algae motion. This opens doors to multiple applications where the flow of nutrients, oxygen and recirculation of living organisms is essential.


Asunto(s)
Chlamydomonas reinhardtii , Movimiento (Física) , Movimiento , Natación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...