Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048705

RESUMEN

Active metasurfaces enable dynamic manipulation of the scattered electromagnetic wavefront by spatially varying the phase and amplitude across arrays of subwavelength scatterers, imparting momentum to outgoing light. Similarly, periodic temporal modulation of active metasurfaces allows for manipulation of the output frequency of light. Here we combine spatial and temporal modulation in electrically modulated reflective metasurfaces operating at 1,530 nm to generate and diffract a spectrum of sidebands at megahertz frequencies. Temporal modulation with tailored waveforms enables the design of a spectrum of sidebands. By impressing a spatial phase gradient on the metasurface, we can diffract selected combinations of sideband frequencies. Combining active temporal and spatial variation can enable unique optical functions, such as frequency mixing, harmonic beam steering or shaping, and breaking of Lorentz reciprocity.

2.
Nat Commun ; 14(1): 8476, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123546

RESUMEN

The strong interaction of light with micro- and nanostructures plays a critical role in optical sensing, nonlinear optics, active optical devices, and quantum optics. However, for wavefront shaping, the required local control over light at a subwavelength scale limits this interaction, typically leading to low-quality-factor optical devices. Here, we demonstrate an avenue towards high-quality-factor wavefront shaping in two spatial dimensions based on all-dielectric higher-order Mie-resonant metasurfaces. We design and experimentally realize transmissive band stop filters, beam deflectors and high numerical aperture radial lenses with measured quality factors in the range of 202-1475 at near-infrared wavelengths. The excited optical mode and resulting wavefront control are both local, allowing versatile operation with finite apertures and oblique illumination. Our results represent an improvement in quality factor by nearly two orders of magnitude over previous localized mode designs, and provide a design approach for a new class of compact optical devices.

3.
ACS Nano ; 14(11): 15042-15055, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33125844

RESUMEN

We report an array-level inverse design approach to optimize the beam steering performance of active metasurfaces, thus overcoming the limitations posed by nonideal metasurface phase and amplitude tuning. In contrast to device-level topology optimization of passive metasurfaces, the outlined system-level optimization framework relies on the electrical tunability of geometrically identical nanoantennas, enabling the design of active antenna arrays with variable spatial phase and amplitude profiles. Based on this method, we demonstrate high-directivity, continuous beam steering up to 70° for phased arrays with realistic tunable antenna designs, despite nonidealities such as strong covariation of scattered light amplitude with phase. Nonintuitive array phase and amplitude profiles further facilitate beam steering with a phase modulation range as low as 180°. Furthermore, we use the device geometries presented in this work for experimental validation of the system-level inverse design approach of active beam steering metasurfaces. The proposed method offers a framework to optimize nanophotonic structures at the array level that is potentially applicable to a wide variety of objective functions and actively tunable metasurface antenna array platforms.

4.
ACS Nano ; 14(6): 6912-6920, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32352740

RESUMEN

Shaping the flow of light at the nanoscale has been a grand challenge for nanophotonics over decades. It is now widely recognized that metasurfaces represent a chip-scale nanophotonics array technology capable of comprehensively controlling the wavefront of light via appropriately configuring subwavelength antenna elements. Here, we demonstrate a reconfigurable metasurface that is multifunctional, i.e., notionally capable of providing diverse optical functions in the telecommunication wavelength regime, using a single compact, lightweight, electronically controlled array with no moving parts. By electro-optical control of the phase of the scattered light from each identical individual metasurface element in an array, we demonstrate a single prototype multifunctional programmable metasurface that is capable of both dynamic beam steering and reconfigurable light focusing. Reconfigurable multifunctional metasurfaces with arrays of tunable optical antennas thus can perform arbitrary optical functions by programmable array-level control of scattered light phase, amplitude, and polarization, similar to dynamic and programmable memories in electronics.

5.
Nat Commun ; 10(1): 3654, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409790

RESUMEN

Tunable metasurfaces enable dynamical control of the key constitutive properties of light at a subwavelength scale. To date, electrically tunable metasurfaces at near-infrared wavelengths have been realized using free carrier modulation, and switching of thermo-optical, liquid crystal and phase change media. However, the highest performance and lowest loss discrete optoelectronic modulators exploit the electro-optic effect in multiple-quantum-well heterostructures. Here, we report an all-dielectric active metasurface based on electro-optically tunable III-V multiple-quantum-wells patterned into subwavelength elements that each supports a hybrid Mie-guided mode resonance. The quantum-confined Stark effect actively modulates this volumetric hybrid resonance, and we observe a relative reflectance modulation of 270% and a phase shift from 0° to ~70°. Additionally, we demonstrate beam steering by applying an electrical bias to each element to actively change the metasurface period, an approach that can also realize tunable metalenses, active polarizers, and flat spatial light modulators.

6.
Nano Lett ; 19(6): 3961-3968, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31136191

RESUMEN

We report a dynamically tunable reflectarray metasurface that continuously modulates the phase of reflected light in the near-infrared wavelength range under active electrical control of the phase transition from semiconducting to semimetallic states. We integrate a vanadium dioxide (VO2) active layer into the dielectric gap of antenna elements in a reflectarray metasurface, which undergoes an insulator-to-metal transition upon resistive heating of the metallic patch antenna. The induced phase transition in the VO2 film strongly perturbs the magnetic dipole resonance supported by the metasurface. By carefully controlling the volume fractions of coexisting metallic and dielectric regions of the VO2 film, we observe a continuous shift of the phase of the reflected light, with a maximal achievable phase shift as high as 250°. We also observe a reflectance modulation of 23.5% as well as a spectral shift of the resonance position by 175 nm. The metasurface phase modulation is fairly broadband, yielding large phase shifts at multiple operation wavelengths.

7.
Nano Lett ; 18(5): 2957-2963, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29570306

RESUMEN

Active metasurfaces composed of electrically reconfigurable nanoscale subwavelength antenna arrays can enable real-time control of scattered light amplitude and phase. Achievement of widely tunable phase and amplitude in chip-based active metasurfaces operating at or near 1550 nm wavelength has considerable potential for active beam steering, dynamic hologram rendition, and realization of flat optics with reconfigurable focal lengths. Previously, electrically tunable conducting oxide-based reflectarray metasurfaces have demonstrated dynamic phase control of reflected light with a maximum phase shift of 184° ( Nano Lett. 2016 , 16 , 5319 ). Here, we introduce a dual-gated reflectarray metasurface architecture that enables much wider (>300°) phase tunability. We explore light-matter interactions with dual-gated metasurface elements that incorporate two independent voltage-controlled MOS field effect channels connected in series to form a single metasurface element that enables wider phase tunability. Using indium tin oxide (ITO) as the active metasurface material and a composite hafnia/alumina gate dielectric, we demonstrate a prototype dual-gated metasurface with a continuous phase shift from 0 to 303° and a relative reflectance modulation of 89% under applied voltage bias of 6.5 V.

8.
Nat Commun ; 8(1): 1631, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29158507

RESUMEN

Emission control of colloidal quantum dots (QDs) is a cornerstone of modern high-quality lighting and display technologies. Dynamic emission control of colloidal QDs in an optoelectronic device is usually achieved by changing the optical pump intensity or injection current density. Here we propose and demonstrate a distinctly different mechanism for the temporal modulation of QD emission intensity at constant optical pumping rate. Our mechanism is based on the electrically controlled modulation of the local density of optical states (LDOS) at the position of the QDs, resulting in the modulation of the QD spontaneous emission rate, far-field emission intensity, and quantum yield. We manipulate the LDOS via field effect-induced optical permittivity modulation of an ultrathin titanium nitride (TiN) film, which is incorporated in a gated TiN/SiO2/Ag plasmonic heterostructure. The demonstrated electrical control of the colloidal QD emission provides a new approach for modulating intensity of light in displays and other optoelectronics.

9.
Adv Mater ; 29(31)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28612946

RESUMEN

A plasmonic metasurface with an electrically tunable optical response that operates at strikingly low modulation voltages is experimentally demonstrated. The fabricated metasurface shows up to 30% relative change in reflectance in the visible spectral range upon application of 5 mV and 78% absolute change in reflectance upon application of 100 mV of bias. The designed metasurface consists of nanostructured silver and indium tin oxide (ITO) electrodes which are separated by 5 nm thick alumina. The millivolt-scale optical modulation is attributed to a new modulation mechanism, in which transport of silver ions through alumina dielectric leads to bias-induced nucleation and growth of silver nanoparticles in the ITO counter-electrode, altering the optical extinction response. This transport mechanism, which occurs at applied electric fields of 1 mV nm-1 , provides a new approach to use of ionic transport for electrical control over light-matter interactions.

10.
Nano Lett ; 16(9): 5319-25, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27564012

RESUMEN

Metasurfaces composed of planar arrays of subwavelength artificial structures show promise for extraordinary light manipulation. They have yielded novel ultrathin optical components such as flat lenses, wave plates, holographic surfaces, and orbital angular momentum manipulation and detection over a broad range of the electromagnetic spectrum. However, the optical properties of metasurfaces developed to date do not allow for versatile tunability of reflected or transmitted wave amplitude and phase after their fabrication, thus limiting their use in a wide range of applications. Here, we experimentally demonstrate a gate-tunable metasurface that enables dynamic electrical control of the phase and amplitude of the plane wave reflected from the metasurface. Tunability arises from field-effect modulation of the complex refractive index of conducting oxide layers incorporated into metasurface antenna elements which are configured in reflectarray geometry. We measure a phase shift of 180° and ∼30% change in the reflectance by applying 2.5 V gate bias. Additionally, we demonstrate modulation at frequencies exceeding 10 MHz and electrical switching of ±1 order diffracted beams by electrical control over subgroups of metasurface elements, a basic requirement for electrically tunable beam-steering phased array metasurfaces. In principle, electrically gated phase and amplitude control allows for electrical addressability of individual metasurface elements and opens the path to applications in ultrathin optical components for imaging and sensing technologies, such as reconfigurable beam steering devices, dynamic holograms, tunable ultrathin lenses, nanoprojectors, and nanoscale spatial light modulators.

11.
Opt Express ; 21(26): 32279-90, 2013 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-24514821

RESUMEN

We study quantum optical properties of a dipole emitter coupled to a rectangular nanoscale waveguide with dielectric core and silver cladding. We investigate enhanced spontaneous emission and the photonic Lamb shift for emitters whose resonant frequencies are near the waveguide frequency cutoff where the waveguide behaves as an ɛ-near-zero metamaterial. Via a dyadic Green's function-based field quantization scheme, we calculate the photonic Lamb shift as well as the spontaneous emission enhancement and spectrum. Using realistic parameters for typical quantum emitters, we suggest experimentally realizable schemes to observe relatively large photonic Lamb shifts in waveguides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA