Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 8(21): 10993-1001, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27174416

RESUMEN

We report the covalent bonding enabled modulation of the interfacial thermal conductance between graphene and metals Cu, Al, and Pt by controlling the oxidation of graphene. By combining comprehensive X-ray photoelectron spectroscopy (XPS) analysis and time-domain thermoreflectance measurements, we quantify the effect of graphene oxidation on interfacial thermal conductance. It was found that thermal conductance increases with the degree of graphene oxidation until a peak value is obtained at an oxygen/carbon atom percentage of ∼7.7%. The maximum enhancement in thermal conductance was measured to be 55%, 38%, and 49% for interfaces between oxidized graphene and Cu, Al, and Pt, respectively. In situ XPS measurements show that oxygen covalently binds to Cu and graphene simultaneously, forming a highly efficient bridge to enhance the thermal transport. Our molecular dynamics simulations verify that strong interfacial covalent bonds are the key to the thermal conductance enhancement. This work provides valuable insights into the mechanism of functionalization-induced thermal conductance enhancement and design guidelines for graphene-based devices.

2.
Nano Lett ; 14(6): 3172-9, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24831202

RESUMEN

Laser reduction of graphene oxide (GO) offers unique opportunities for the rapid, nonchemical production of graphene. By tuning relevant reduction parameters, the band gap and conductivity of reduced GO can be precisely controlled. In situ monitoring of single layer GO reduction is therefore essential. In this report, we show the direct observation of laser-induced, single layer GO reduction through correlated changes to its absorption and emission. Absorption/emission movies illustrate the initial stages of single layer GO reduction, its transition to reduced-GO (rGO) as well as its subsequent decomposition upon prolonged laser illumination. These studies reveal GO's photoreduction life cycle and through it native GO/rGO absorption coefficients, their intrasheet distributions as well as their spatial heterogeneities. Extracted absorption coefficients for unreduced GO are α405 nm ≈ 6.5 ± 1.1 × 10(4) cm(-1), α520 nm ≈ 2.1 ± 0.4 × 10(4) cm(-1), and α640 nm ≈ 1.1 ± 0.3 × 10(4) cm(-1) while corresponding rGO α-values are α405 nm ≈ 21.6 ± 0.6 × 10(4) cm(-1), α520 nm ≈ 16.9 ± 0.4 × 10(4) cm(-1), and α640 nm ≈ 14.5 ± 0.4 × 10(4) cm(-1). More importantly, the correlated absorption/emission imaging provides us with unprecedented insight into GO's underlying photoreduction mechanism, given our ability to spatially resolve its kinetics and to connect local rate constants to activation energies. On a broader level, the developed absorption imaging is general and can be applied toward investigating the optical properties of other two-dimensional materials, especially those that are nonemissive and are invisible to current single molecule optical techniques.

3.
Nano Lett ; 13(12): 5777-84, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24245975

RESUMEN

Graphene oxide (GO) is an important precursor in the production of chemically derived graphene. During reduction, GO's electrical conductivity and band gap change gradually. Doping and chemical functionalization are also possible, illustrating GO's immense potential in creating functional devices through control of its local hybridization. Here we show that laser-induced photolysis controllably reduces individual single-layer GO sheets. The reaction can be followed in real time through sizable decreases in GO's photoluminescence efficiency along with spectral blueshifts. As-produced reduced graphene oxide (rGO) sheets undergo additional photolysis, characterized by dramatic emission enhancements and spectral redshifts. Both GO's reduction and subsequent conversion to photobrightened rGO are captured through movies of their photoluminescence kinetics. Rate maps illustrate sizable spatial and temporal heterogeneities in sp(2) domain growth and reveal how reduction "flows" across GO and rGO sheets. The observed heterogeneous reduction kinetics provides mechanistic insight into GO's conversion to chemically derived graphene and highlights opportunities for overcoming its dynamic, chemical disorder.


Asunto(s)
Grafito/química , Compuestos Orgánicos/química , Óxidos/química , Conductividad Eléctrica , Cinética , Fotólisis
4.
Anal Chem ; 85(3): 1276-9, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23286321

RESUMEN

Mineral-assisted thermal decomposition of formamide (HCONH(2)) is a heavily studied model prebiotic reaction that has offered valuable insights into the plausible pathways leading to the chemical building blocks of primordial informational polymers. To date, most efforts have focused on the analysis of formamide reaction products released in solution, although several studies have examined the role of mineral catalysts in promoting this chemistry. We show here that the direct investigation of reactive mineral surfaces by desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) gives a new perspective on the important role of the mineral surface in the formation of reaction products. As a proof-of-principle example, we show that DESI-MSI allows interrogation of the molecular products produced on heterogeneous granite samples with minimal sample preparation. Purine and pyrimidine nucleobases and their derivatives are successfully detected by DESI-MSI, with a strong correlation of the spatial product distribution with the mineral microenvironment. To our knowledge, this study is the first application of DESI-MSI to the study of complex and porous mineral surfaces and their roles in chemical evolution. This DESI-MSI approach is generally applicable to a wide range of reactions or other processes involving minerals.


Asunto(s)
Minerales/química , Prebióticos , Espectrometría de Masa por Ionización de Electrospray/métodos , Imagen Óptica/métodos , Prebióticos/análisis , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...