Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
J Phys Chem A ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787346

RESUMEN

Heteroaromatic molecules are found in areas ranging from biochemistry to photovoltaics. We analyze the n,π* excited states of 6π-electron heteroaromatics with in-plane lone pairs (nσ, herein n) and use qualitative theory and quantum chemical computations, starting at Mandado's 2n + 1 rule for aromaticity of separate spins. After excitation of an electron from n to π*, a (4n + 2)π-electron species has 2n + 2 πα-electrons and 2n + 1 πß-electrons (or vice versa) and becomes πα-antiaromatic and πß-aromatic. Yet, the antiaromatic πα- and aromatic πß-components seldom cancel, leading to residuals with aromatic or antiaromatic character. We explore vertically excited triplet n,π* states (3n,π*), which are most readily analyzed, but also singlet n,π* states (1n,π*), and explain which compounds have n,π* states with aromatic residuals as their lowest excited states (e.g., pyrazine and the phenyl anion). If the πß-electron population becomes more (less) uniformly distributed upon excitation, the system will have an (anti)aromatic residual. Among isomers, the one that has the most aromatic residual in 3n,π* is often of the lowest energy in this state. Five-membered ring heteroaromatics with one or two N, O, and/or S atoms never have n,π* states as their first excited states (T1 and S1), while this is nearly always the case for six-membered ring heteroaromatics with electropositive heteroatoms and/or highly symmetric (D2h) diheteroaromatics. For the complete compound set, there is a modest correlation between the (anti)aromatic character of the n,π* state and the energy gap between the lowest n,π* and π,π* states (R2 = 0.42), while it is stronger for monosubstituted pyrazines (R2 = 0.84).

2.
J Am Chem Soc ; 146(20): 14166-14173, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717077

RESUMEN

Inorganic fullerene clusters have attracted widespread attention due to their highly symmetrical geometric structures and intrinsic electronic properties. However, cage-like clusters composed of heavy metal elements with high symmetry are rarely reported, and their synthesis is also highly challenging. In this study, we present the synthesis of a [K2(Bi@Pd12@Bi20)]4- cluster that incorporates a {Bi20} cage with pseudo-Ih symmetry, making it the largest main group metal cluster compound composed of the bismuth element to date. Magnetic characterization and theoretical calculations suggest that the spin state of the overall cluster is a quartet. Quantum chemical calculations reveal that the [Bi20]3- cluster has a similar electronic configuration to C606- and the [Bi@Pd12@Bi20]6- cluster exhibits a unique open-shell aromatic character.

3.
Phys Chem Chem Phys ; 26(21): 15386-15392, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38747026

RESUMEN

Singlet fission (SF) compounds offer a promising avenue for improving the performance of solar cells. Using TD-DFT methods, anti-Kasha azulene derivatives that could carry out SF have been designed. For this purpose, substituted azulenes with a donor (-OH) and/or an acceptor group (-CN) have been systematically studied using the S2 ≥ 2T1 formula. We have found that -CN (-OH) substituents on electrophilic (nucleophilic) carbons result in improved SF properties when compared to azulene.

4.
J Am Chem Soc ; 146(11): 7791-7802, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38461434

RESUMEN

The development of new synthetic methods for B-H bond activation has been an important research area in boron cluster chemistry, which may provide opportunities to broaden the application scope of boron clusters. Herein, we present a new reaction strategy for the direct site-selective B-H functionalization of nido-carboranes initiated by photoinduced cage activation via a noncovalent cage···π interaction. As a result, the nido-carborane cage radical is generated through a single electron transfer from the 3D nido-carborane cage to a 2D photocatalyst upon irradiation with green light. The resulting transient nido-carborane cage radical could be directly probed by an advanced time-resolved EPR technique. In air, the subsequent transformations of the active nido-carborane cage radical have led to efficient and selective B-N, B-S, and B-Se couplings in the presence of N-heterocycles, imines, thioethers, thioamides, and selenium ethers. This protocol also facilitates both the late-stage modification of drugs and the synthesis of nido-carborane-based drug candidates for boron neutron capture therapy (BNCT).

5.
Beilstein J Org Chem ; 20: 272-279, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379734

RESUMEN

The regioselective functionalization of fullerenes holds significant promise for applications in the fields of medicinal chemistry, materials science, and photovoltaics. In this study, we investigate the regioselectivity of the rhodium(I)-catalyzed [2 + 2 + 2] cycloaddition reactions between diynes and C70 as a novel procedure for generating C70 bis(fulleroid) derivatives. The aim is to shed light on the regioselectivity of the process through both experimental and computational approaches. In addition, the photooxidation of one of the C-C double bonds in the synthesized bis(fulleroids) affords open-cage C70 derivatives having a 12-membered ring opening.

6.
Chemphyschem ; 25(8): e202400069, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38358389

RESUMEN

Given its wide variety of applications in the pharmaceutical industry, the synthesis of imidazo[1,2-a]pyridines has been extensively studied since the beginning of the last century. Here, we disclose the mechanism for the synthesis of imidazo[1,2-a]pyridines by means of the Ortoleva-King reaction. We also reveal the reaction pathway leading to the formation of a iodinated byproduct, demonstrating the challenge of preventing the formation of such a byproduct because of the low energy barrier to access it. Moreover, quantum chemistry tools were employed to investigate the mechanism of intramolecular proton transfer in the excited state, and connections with aromaticity were explored.

7.
Chemistry ; 30(8): e202303185, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37870211

RESUMEN

We have quantum chemically investigated the boron-boron bonds in B2 , diborynes B2 L2 , and diborenes B2 H2 L2 (L=none, OH2 , NH3 ) using dispersion-corrected relativistic density functional theory at ZORA-BLYP-D3(BJ)/TZ2P. B2 has effectively a single B-B bond provided by two half π bonds, whereas B2 H2 has effectively a double B=B bond provided by two half π bonds and one σ 2p-2p bond. This different electronic structure causes B2 and B2 H2 to react differently to the addition of ligands. Thus, in B2 L2 , electron-donating ligands shorten and strengthen the boron-boron bond whereas, in B2 H2 L2 , they lengthen and weaken the boron-boron bond. The aforementioned variations in boron-boron bond length and strength become more pronounced as the Lewis basicity of the ligands L increases.

8.
Chemistry ; 30(1): e202302415, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37955853

RESUMEN

Nowadays, an active research topic is the connection between Clar's rule, aromaticity, and magnetic properties of polycyclic benzenoid hydrocarbons. In the present work, we employ a meticulous magnetically induced current density analysis to define the net current flowing through any cyclic circuit, connecting it to aromaticity based on the ring current concept. Our investigation reveals that the analyzed polycyclic systems display a prominent global ring current, contrasting with subdued semi-local and local ring currents. These patterns align with Clar's aromatic π-sextets only in cases where migrating π-sextet structures are invoked. The results of this study will enrich our comprehension of aromaticity and magnetic behavior in such systems, offering significant insights into coexisting ring current circuits in these systems.

9.
Acc Chem Res ; 57(1): 37-46, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38103043

RESUMEN

ConspectusPhotoinduced electron transfer (PET) in carbon materials is a process of great importance in light energy conversion. Carbon materials, such as fullerenes, graphene flakes, carbon nanotubes, and cycloparaphenylenes (CPPs), have unusual electronic properties that make them interesting objects for PET research. These materials can be used as electron-hole transport layers, electrode materials, or passivation additives in photovoltaic devices. Moreover, their appropriate combination opens up new possibilities for constructing photoactive supramolecular systems with efficient charge transfer between the donor and acceptor parts. CPPs build a class of molecules consisting of para-linked phenylene rings. CPPs and their numerous derivatives are appealing building blocks in supramolecular chemistry, acting as suitable concave receptors with strong host-guest interactions for the convex surfaces of fullerenes. Efficient PET in donor-acceptor systems can be observed when charge separation occurs faster than charge recombination. This Account focuses on selected inclusion complexes of carbon nanohoops studied by our group. We modeled charge separation and charge recombination in both previously synthesized and computationally designed complexes to identify how various modifications of host and guest molecules affect the PET efficiency in these systems. A consistent computational protocol we used includes a time-dependent density-functional theory (TD-DFT) formalism with the Tamm-Dancoff approximation (TDA) and CAM-B3LYP functional to carry out excited state calculations and the nonadiabatic electron transfer theory to estimate electron-transfer rates. We show how the photophysical properties of carbon nanohoops can be modified by incorporating additional π-conjugated fragments and antiaromatic units, multiple fluorine substitutions, and extending the overall π-electron system. Incorporating π-conjugated groups or linkers is accompanied by the appearance of new charge transfer states. Perfluorination of the nanohoops radically changes their role in charge separation from an electron donor to an electron acceptor. Vacancy defects in π-extended nanohoops are shown to hinder PET between host and guest molecules, while large fully conjugated π-systems improve the electron-donor properties of nanohoops. We also highlight the role of antiaromatic structural units in tuning the electronic properties of nanohoops. Depending on the aromaticity degree of monomeric units in nanohoops, the direction of electron transfer in their complexes with C60 fullerene can be altered. Nanohoops with aromatic units usually act as electron donors, while those with antiaromatic monomers serve as electron acceptors. Finally, we discuss why charged fullerenes are better electron acceptors than neutral C60 and how the charge location allows for the design of more efficient donor-acceptor systems with an unusual hypsochromic shift of the charge transfer band in polar solvents.

10.
Chem Sci ; 14(36): 9628-9629, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736624

RESUMEN

In this themed collection, we embark on a captivating journey into the realm of aromaticity, a fundamental concept that has attracted chemists for nearly two centuries. This virtual collection offers a comprehensive overview of the recent advances in the field, encompassing thirty manuscripts published in Chemical Science from 2021 to the present. Aromaticity, a concept with a rich history has undergone substantial evolution. Its significance transcends the boundaries of organic chemistry, expanding its influence into the domains of inorganic chemistry, organometallic chemistry, and materials science. This collection shows the dynamic nature of contemporary research within this fascinating field.

11.
J Am Chem Soc ; 145(41): 22527-22538, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37728951

RESUMEN

3D-aromatic molecules with (distorted) tetrahedral, octahedral, or spherical structures are much less common than typical 2D-aromatic species or even 2D-aromatic-in-3D systems. Closo boranes, [BnHn]2- (5 ≤ n ≤ 14) and carboranes are examples of compounds that are singly 3D-aromatic, and we now explore if there are species that are doubly 3D-aromatic. The most widely known example of a species with double 2D-aromaticity is the hexaiodobenzene dication, [C6I6]2+. This species shows π-aromaticity in the benzene ring and σ-aromaticity in the outer ring formed by the iodine substituents. Inspired by the hexaiodobenzene dication example, in this work, we explore the potential for double 3D-aromaticity in [B12I12]0/2+. Our results based on magnetic and electronic descriptors of aromaticity together with 11B{1H} NMR experimental spectra of boron-iodinated o-carboranes suggest that these two oxidized forms of a closo icosahedral dodecaiodo-dodecaborate cluster, [B12I12] and [B12I12]2+, behave as doubly 3D-aromatic compounds. However, an evaluation of the energetic contribution of the potential double 3D-aromaticity through homodesmotic reactions shows that delocalization in the I12 shell, in contrast to the 10σ-electron I62+ ring in the hexaiodobenzene dication, does not contribute to any stabilization of the system. Therefore, the [B12I12]0/2+ species cannot be considered as doubly 3D-aromatic.

12.
Dalton Trans ; 52(37): 13068-13078, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37700680

RESUMEN

Beryllium is a metallomimetic main-group element, i.e., it behaves similarly to transition metals (TMs) in some bond activation processes. To investigate the ability of Be compounds to activate C-X bonds (X = F-I), we have computationally investigated, using DFT methods, the reaction of (CAAC)2Be (CAAC = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) and a series of five-membered heterocyclic beryllium bidentate ligands with phenyl halides. We have analysed all plausible reaction mechanisms and our results show that, after the initial C-X oxidative addition, migration of the phenyl group occurs towards the less electronegative heteroatom. Our theoretical study highlights the important role of bidentate non-innocent ligands in providing the required electrons for the initial Ph-X oxidative addition. In contrast, the monodentate ligand, CAAC, does not favour this oxidative addition.

13.
Chemistry ; 29(69): e202302448, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37702301

RESUMEN

The homolytic elimination of two H atoms from two adjacent carbons in benzene results in the aromatic product o-benzyne. In a similar way, the homolytic elimination of two H atoms from the two adjacent carbons in 1,2-C2 B10 H12 results in the aromatic product o-carboryne. In this work, we provide experimental and computational evidences that despite the similarity of o-carboryne and o-benzyne, the nature of the C-C bond generated between two adjacent carbons that lose H atoms is different. While in o-benzyne the C-C bond behaves as a triple bond, in o-carboryne the C-C bond is a double bond. Therefore, we must stop naming 1,2-dehydro-o-carboryne as o-carboryne but instead call it o-carborene.

14.
Chemistry ; 29(63): e202302303, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37553318

RESUMEN

Synthetic strategies to access high-valent iridium complexes usually require use of π donating ligands bearing electronegative atoms (e. g. amide or oxide) or σ donating electropositive atoms (e. g. boryl or hydride). Besides the η5 -(methyl)cyclopentadienyl derivatives, high-valent η1 carbon-ligated iridium complexes are challenging to synthesize. To meet this challenge, this work reports the oxidation behavior of an all-carbon-ligated anionic bis(CCC-pincer) IrIII complex. Being both σ and π donating, the diaryl dipyrido-annulated N-heterocyclic carbene (dpa-NHC) IrIII complex allowed a stepwise 4e- oxidation sequence. The first 2e- oxidation led to an oxidative coupling of two adjacent aryl groups, resulting in formation of a cationic chiral IrIII complex bearing a CCCC-tetradentate ligand. A further 2e- oxidation allowed isolation of a high-valent tricationic complex with a triplet ground state. These results close a synthetic gap for carbon-ligated iridium complexes and demonstrate the electronic tuning potential of organic π ligands for unusual electronic properties.

16.
Chem Sci ; 14(21): 5569-5576, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37265727

RESUMEN

Aromaticity is one of the most deeply rooted concepts in chemistry. But why, if two-thirds of existing compounds can be classified as aromatic, is there no consensus on what aromaticity is? σ-, π-, δ-, spherical, Möbius, or all-metal aromaticity… why are so many attributes needed to specify a property? Is aromaticity a dubious concept? This perspective aims to reflect where the aromaticity community is and where it is going.

17.
Inorg Chem ; 62(24): 9578-9588, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37270703

RESUMEN

The aromatic character of a series of osmaacenes in their lowest-lying singlet and triplet states was thoroughly examined by means of the magnetically induced current densities and multicentre delocalization indices (MCIs). Both employed approaches agree that the osmabenzene molecule (OsB) in the S0 state exhibits dominant π-Hückel-type aromatic character, with a small but nonnegligible amount of π-Craig-Möbius aromaticity. Contrary to benzene, which is antiaromatic in the T1 state, OsB preserves some of its aromaticity in the T1 state. In higher members of the osmaacene series in the S0 and T1 states, the central Os-containing ring becomes nonaromatic, acting as a barrier between the two side polyacenic units which, on the other hand, exhibit a significant extent of π-electron delocalization.

18.
J Chem Phys ; 158(24)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37358217

RESUMEN

We present a straightforward and low-cost computational protocol to estimate the variation of the charge transfer rate constant, kCT, in a molecular donor-acceptor caused by an external electric field. The proposed protocol also allows for determining the strength and direction of the field that maximize the kCT. The application of this external electric field results in up to a >4000-fold increase in the kCT for one of the systems studied. Our method allows the identification of field-induced charge-transfer processes that would not occur without the perturbation caused by an external electric field. In addition, the proposed protocol can be used to predict the effect on the kCT due to the presence of charged functional groups, which may allow for the rational design of more efficient donor-acceptor dyads.

19.
Chemistry ; 29(35): e202300503, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37002639

RESUMEN

An approach to modulating the properties of carbon nanorings by incorporating pyrrolo[3,2-b]pyrrole units is of particular interest due to the combined effect of heteroatom and antiaromatic character on electronic properties. The inclusion of units other than phenylene leads to the formation of stereoisomers. In this work, we computationally study how the spatial orientation of monomeric units in the ring affects the properties of cyclic dibenzopyrrolo[3,2-b]pyrroles and their complexes with C60 fullerene. For [4]PP and [4]DHPP, the most symmetrical AAAA isomer is the most stable and forms stronger interactions with fullerene than the isomers where one or two monomeric units are flipped, mostly due to less Pauli repulsion. π-Electron delocalization in the monomeric unit is crucial for directing the electron transfer (from or to nanoring). The energy of excited states with charge transfer depends on the HOMO-LUMO gap, which varies from one stereoisomer to another only for [4]DHPP⊃C60 with aromatic 1,4-dihydropyrrolo[3,2-b]pyrrole units. The rates of electron transfer and charge recombination reactions are relatively weakly dependent of the spatial isomerism of nanorings.


Asunto(s)
Fulerenos , Isomerismo , Transporte de Electrón , Carbono , Pirroles
20.
Phys Chem Chem Phys ; 25(11): 8043-8049, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36876585

RESUMEN

Given the importance of serine proteases for biochemical processes, we have studied the peptide bond rupture mechanism using three sequential scale models as representations of the KLK5 enzyme (a protein overexpressed in ovarian cancer). The first model contains the basic functional groups of the residues that conform to the catalytic triad present in serine proteases; the second model contains some additional residues and, finally, the last representation includes all atoms of the KLK5 protein together with 10.000 explicit water molecules. This separation into three scale models allows us to separate the intrinsic reactivity of the catalytic triad from the process taking place in the enzyme. The methodologies employed in this work include full DFT calculations with a dielectric continuum in the first two models and a multi-level setup with a Quantum Mechanics/Molecular Mechanics (QM/MM) partition in the whole protein system. Our results show that the peptide-bond rupture mechanism is a stepwise process involving two proton transfer reactions. The rate-determining step is the second proton transfer from the imidazole group to the amidic nitrogen of the substrate. In addition, we find that the simplest model does not provide accurate results compared to the full protein system. This can be attributed to the electronic stabilization conferred by the residues around the reaction site. Interestingly, the energy profile obtained with the second scale model with additional residues shows the same trends as the full system and could therefore be considered an appropriate model system. It could be used for studying the peptide bond rupture mechanism in case full QM/MM calculations cannot be performed, or as a rapid tool for screening purposes.


Asunto(s)
Protones , Serina Proteasas , Serina Proteasas/metabolismo , Serina Endopeptidasas/metabolismo , Proteínas , Simulación de Dinámica Molecular , Péptidos , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...