Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 197(17): 2879-93, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26124239

RESUMEN

UNLABELLED: Many plant-pathogenic bacteria utilize type II secretion (T2S) systems to secrete degradative enzymes into the extracellular milieu. T2S substrates presumably mediate the degradation of plant cell wall components during the host-pathogen interaction and thus promote bacterial virulence. Previously, the Xps-T2S system from Xanthomonas campestris pv. vesicatoria was shown to contribute to extracellular protease activity and the secretion of a virulence-associated xylanase. The identities and functions of additional T2S substrates from X. campestris pv. vesicatoria, however, are still unknown. In the present study, the analysis of 25 candidate proteins from X. campestris pv. vesicatoria led to the identification of two type II secreted predicted xylanases, a putative protease and a lipase which was previously identified as a virulence factor of X. campestris pv. vesicatoria. Studies with mutant strains revealed that the identified xylanases and the protease contribute to virulence and in planta growth of X. campestris pv. vesicatoria. When analyzed in the related pathogen X. campestris pv. campestris, several T2S substrates from X. campestris pv. vesicatoria were secreted independently of the T2S systems, presumably because of differences in the T2S substrate specificities of the two pathogens. Furthermore, in X. campestris pv. vesicatoria T2S mutants, secretion of T2S substrates was not completely absent, suggesting the contribution of additional transport systems to protein secretion. In line with this hypothesis, T2S substrates were detected in outer membrane vesicles, which were frequently observed for X. campestris pv. vesicatoria. We, therefore, propose that extracellular virulence-associated enzymes from X. campestris pv. vesicatoria are targeted to the Xps-T2S system and to outer membrane vesicles. IMPORTANCE: The virulence of plant-pathogenic bacteria often depends on TS2 systems, which secrete degradative enzymes into the extracellular milieu. T2S substrates are being studied in several plant-pathogenic bacteria, including Xanthomonas campestris pv. vesicatoria, which causes bacterial spot disease in tomato and pepper. Here, we show that the T2S system from X. campestris pv. vesicatoria secretes virulence-associated xylanases, a predicted protease, and a lipase. Secretion assays with the related pathogen X. campestris pv. campestris revealed important differences in the T2S substrate specificities of the two pathogens. Furthermore, electron microscopy showed that T2S substrates from X. campestris pv. vesicatoria are targeted to outer membrane vesicles (OMVs). Our results, therefore, suggest that OMVs provide an alternative transport route for type II secreted extracellular enzymes.


Asunto(s)
Sistemas de Secreción Bacterianos/fisiología , Endo-1,4-beta Xilanasas/metabolismo , Péptido Hidrolasas/metabolismo , Vesículas Transportadoras/fisiología , Xanthomonas campestris/enzimología , Endo-1,4-beta Xilanasas/genética , Microscopía Inmunoelectrónica , Péptido Hidrolasas/genética , Enfermedades de las Plantas/microbiología , Especificidad por Sustrato , Virulencia , Factores de Virulencia/metabolismo , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo , Xanthomonas campestris/patogenicidad
2.
New Phytol ; 198(3): 899-915, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23442088

RESUMEN

Xylan is a major structural component of plant cell wall and the second most abundant plant polysaccharide in nature. Here, by combining genomic and functional analyses, we provide a comprehensive picture of xylan utilization by Xanthomonas campestris pv campestris (Xcc) and highlight its role in the adaptation of this epiphytic phytopathogen to the phyllosphere. The xylanolytic activity of Xcc depends on xylan-deconstruction enzymes but also on transporters, including two TonB-dependent outer membrane transporters (TBDTs) which belong to operons necessary for efficient growth in the presence of xylo-oligosaccharides and for optimal survival on plant leaves. Genes of this xylan utilization system are specifically induced by xylo-oligosaccharides and repressed by a LacI-family regulator named XylR. Part of the xylanolytic machinery of Xcc, including TBDT genes, displays a high degree of conservation with the xylose-regulon of the oligotrophic aquatic bacterium Caulobacter crescentus. Moreover, it shares common features, including the presence of TBDTs, with the xylan utilization systems of Bacteroides ovatus and Prevotella bryantii, two gut symbionts. These similarities and our results support an important role for TBDTs and xylan utilization systems for bacterial adaptation in the phyllosphere, oligotrophic environments and animal guts.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Regulación Bacteriana de la Expresión Génica , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo , Xilanos/metabolismo , Adaptación Fisiológica , Animales , Proteínas de la Membrana Bacteriana Externa/metabolismo , Bacteroides/metabolismo , Brassica/microbiología , Caulobacter crescentus/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Oligosacáridos/química , Oligosacáridos/metabolismo , Operón , Phaseolus/microbiología , Simbiosis , Xanthomonas campestris/crecimiento & desarrollo , Xanthomonas campestris/patogenicidad , Xilosa/metabolismo , Xilosidasas/genética , Xilosidasas/metabolismo
3.
FEBS Lett ; 587(6): 737-42, 2013 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-23395613

RESUMEN

Unfolding by chemical denaturants and the linear extrapolation method are widely used to determine the free energy of proteins. Ribonuclease 3 from bullfrog shows an extraordinary behavior in guanidinium hydrochloride in comparison to its homologues ribonuclease A and onconase with a high transition midpoint of denaturation but an apparently low cooperativity. The analysis of the interdependence of thermal, urea-, and guanidine hydrochloride-induced unfolding revealed that whereas addition of urea resulted in the expected destabilization of all three proteins, guanidine hydrochloride acted diversely: in contrast to ribonuclease A and onconase, both of which were destabilized as expected, low concentrations of guanidine hydrochloride significantly stabilize ribonuclease 3 from bullfrog. This stabilizing effect was endorsed by in silico docking studies.


Asunto(s)
Proteínas Anfibias/química , Guanidina/química , Rana catesbeiana/metabolismo , Ribonucleasa III/química , Proteínas Anfibias/genética , Proteínas Anfibias/metabolismo , Animales , Estabilidad de Enzimas , Escherichia coli/genética , Expresión Génica , Cinética , Simulación del Acoplamiento Molecular , Desnaturalización Proteica , Desplegamiento Proteico , Rana catesbeiana/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Ribonucleasa Pancreática/química , Ribonucleasa Pancreática/metabolismo , Ribonucleasas/química , Ribonucleasas/metabolismo , Termodinámica , Urea/química
4.
Appl Environ Microbiol ; 78(13): 4732-9, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22544244

RESUMEN

To advance the understanding of the molecular mechanisms controlling microbial activities involved in carbon cycling and mitigation of environmental pollution in freshwaters, the influence of heavy metals and natural as well as xenobiotic organic compounds on laccase gene expression was quantified using quantitative real-time PCR (qRT-PCR) in an exclusively aquatic fungus (the aquatic hyphomycete Clavariopsis aquatica) for the first time. Five putative laccase genes (lcc1 to lcc5) identified in C. aquatica were differentially expressed in response to the fungal growth stage and potential laccase inducers, with certain genes being upregulated by, e.g., the lignocellulose breakdown product vanillic acid, the endocrine disruptor technical nonylphenol, manganese, and zinc. lcc4 is inducible by vanillic acid and most likely encodes an extracellular laccase already excreted during the trophophase of the organism, suggesting a function during fungal substrate colonization. Surprisingly, unlike many laccases of terrestrial fungi, none of the C. aquatica laccase genes was found to be upregulated by copper. However, copper strongly increases extracellular laccase activity in C. aquatica, possibly due to stabilization of the copper-containing catalytic center of the enzyme. Copper was found to half-saturate laccase activity already at about 1.8 µM, in favor of a fungal adaptation to low copper concentrations of aquatic habitats.


Asunto(s)
Ascomicetos/enzimología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Lacasa/biosíntesis , Manganeso/metabolismo , Fenoles/metabolismo , Ácido Vanílico/metabolismo , Zinc/metabolismo , Ascomicetos/efectos de los fármacos , Ascomicetos/genética , Cobre/metabolismo , ADN de Hongos/química , ADN de Hongos/genética , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
5.
FEMS Microbiol Rev ; 35(4): 620-51, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21276025

RESUMEN

Research on freshwater fungi has concentrated on their role in plant litter decomposition in streams. Higher fungi dominate over bacteria in terms of biomass, production and enzymatic substrate degradation. Microscopy-based studies suggest the prevalence of aquatic hyphomycetes, characterized by tetraradiate or sigmoid spores. Molecular studies have consistently demonstrated the presence of other fungal groups, whose contributions to decomposition are largely unknown. Molecular methods will allow quantification of these and other microorganisms. The ability of aquatic hyphomycetes to withstand or mitigate anthropogenic stresses is becoming increasingly important. Metal avoidance and tolerance in freshwater fungi implicate a sophisticated network of mechanisms involving external and intracellular detoxification. Examining adaptive responses under metal stress will unravel the dynamics of biochemical processes and their ecological consequences. Freshwater fungi can metabolize organic xenobiotics. For many such compounds, terrestrial fungal activity is characterized by cometabolic biotransformations involving initial attack by intracellular and extracellular oxidative enzymes, further metabolization of the primary oxidation products via conjugate formation and a considerable versatility as to the range of metabolized pollutants. The same capabilities occur in freshwater fungi. This suggests a largely ignored role of these organisms in attenuating pollutant loads in freshwaters and their potential use in environmental biotechnology.


Asunto(s)
Agua Dulce/microbiología , Hongos Mitospóricos/fisiología , Contaminantes del Agua/metabolismo , Biodegradación Ambiental , Biodiversidad , Biomasa , Ecología , Ambiente , Eutrofización , Cadena Alimentaria , Hongos Mitospóricos/enzimología , Hongos Mitospóricos/genética , Hongos Mitospóricos/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Estrés Fisiológico/fisiología , Microbiología del Agua
6.
FEMS Microbiol Lett ; 288(1): 47-54, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18764877

RESUMEN

We investigated the influence of potential laccase inducers with environmental relevance on extracellular laccase activity and removal of the xenoestrogen technical nonylphenol (tNP) by the aquatic hyphomycete Clavariopsis aquatica. Concomitantly, we identified two putative laccase gene fragments (Icc1 and Icc2) and have followed their expression during removal of tNP under different conditions. Our results indicate a significant effect of copper on extracellular laccase activity in supernatants of fungal cultures. Laccase activity was highest in the presence of copper when added together with vanillic acid, followed by copper when used alone. Only slight laccase activities were recorded in the presence of only vanillic acid, whereas in the absence of either compound laccase activities were negligible. Laccase activity was well correlated with the removal efficiency of tNP, indicating the involvement of laccase in tNP bioconversion. Overall, Icc2 was less expressed than Icc1. The expression of Icc1 and Icc2 correlated only partially with the measured laccase activity, suggesting the existence of cell-associated laccase fractions not detectable in fungal culture supernatants and/or the existence of additional laccase genes.


Asunto(s)
Espacio Extracelular/enzimología , Proteínas Fúngicas/metabolismo , Lacasa/metabolismo , Hongos Mitospóricos/enzimología , Fenoles/metabolismo , Transcripción Genética , Contaminantes Químicos del Agua/metabolismo , Actinas/genética , Actinas/metabolismo , Secuencia de Aminoácidos , Biodegradación Ambiental , Espacio Extracelular/química , Espacio Extracelular/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Lacasa/química , Lacasa/genética , Hongos Mitospóricos/química , Hongos Mitospóricos/genética , Datos de Secuencia Molecular , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...