Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Beilstein J Org Chem ; 20: 1580-1589, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076287

RESUMEN

The reaction mechanism for the chlorination and bromination of 2-naphthol with PIDA or PIFA and AlX3 (X = Cl, Br), previously reported by our group, was elucidated via quantum chemical calculations using density functional theory. The chlorination mechanism using PIFA and AlCl3 demonstrated a better experimental and theoretical yield compared to using PIDA. Additionally, the lowest-energy chlorinating species was characterized by an equilibrium of Cl-I(Ph)-OTFA-AlCl3 and [Cl-I(Ph)][OTFA-AlCl3], rather than PhICl2 being the active species. On the other hand, bromination using PIDA and AlBr3 was more efficient, wherein the intermediate Br-I(Ph)-OAc-AlBr3 was formed as active brominating species. Similarly, PhIBr2 was higher in energy than our proposed species. The reaction mechanisms are described in detail in this work and were found to be in excellent agreement with the experimental yield. These initial results confirmed that our proposed mechanism was energetically favored and therefore more plausible compared to halogenation via PhIX2.

2.
J Biomol Struct Dyn ; : 1-12, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37937766

RESUMEN

The protein tyrosine kinase (PTK) produced by the BCR-ABL1 gene has generated significant interest in the development of inhibitors since the presence of punctual mutations causes resistance to currently approved drugs, mainly the T315I mutation has been the most difficult to address. In this work, derivatives of 1,6-dihydroazaazulenes are studied as possible inhibitors of this PTK in its wild form and the mutant T315I. The recognition of the ligands was explored through molecular docking, and the stability of the complexes and their evolution over time was studied using molecular dynamics (MD) simulations. Our results show that complexes are energetically stable and reside on the ATP binding site in all cases during the MD experiments. Interestingly, a few of our proposed ligands presented greater affinity for T315I, finding more favorable binding free energies (ΔG) than the reference drug axitinib. Furthermore, they may act as inhibitors for both isoforms. Our findings are promising because mutation of T315I does not prevent ligand recognition, as detailed in this work, which is very important to conduct further experimental research.Communicated by Ramaswamy H. Sarma.

3.
Bioorg Med Chem Lett ; 63: 128649, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35245665

RESUMEN

Zygomycetes are ubiquitous saprophytes in natural environments which transform organic matter. Some zygomycetes of gender Mucor have attracted interest in health sector. Due to its ability as opportunistic microorganisms infecting immuno-compromised people and to the few available pharmacological treatments, the mucormycosis is receiving worldwide attention. Concerning to the pharmacological treatments, some triazole-based compounds such as fluconazole are extensively used. Nevertheless, we focused in the quinolines since they are broadly used models for the design and development of new synthetic antifungal agents. In this study, the fungistatic activity on M. circinelloides of various 2-aryl-4-aryloxyquinoline-based compounds was discovered, and in some cases, it resulted better than reference compound fluconazole. These quinoline derivatives were synthesized via the Csp2-O bond formation using diaryliodonium(III) salts chemistry. A QSAR study was carried out to quantitatively correlate the chemical structure of the tested compounds with their biological activity. Also, a docking study to identify a plausible action target of our more active quinolines was carried out. The results highlighted an increased activity with the fluorine- and nitro-containing derivatives. In light of the few mucormycosis pharmacological treatments, herein we present some non-described molecules with excellent in vitro activities and potential use in the mucormycosis treatment.


Asunto(s)
Mucormicosis , Quinolinas , Fluconazol , Humanos , Mucor , Mucormicosis/tratamiento farmacológico , Mucormicosis/microbiología , Relación Estructura-Actividad Cuantitativa , Quinolinas/farmacología , Quinolinas/uso terapéutico
4.
RSC Adv ; 9(32): 18265-18270, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35515265

RESUMEN

An efficient transition-metal-based heterogeneous catalyst free procedure for obtaining the oxidative amidation of benzaldehyde using quinones as oxidizing agents in low molar proportions is described here. Pyrrolylquinones (PQ) proved to be more suitable than DDQ and 2,5-dimethylbenzoquinone to conduct the oxidation process. Although the solvent itself acted as the oxidant with low to moderate yields, PQ/DMSO provided an efficient system for carrying out the reaction under operational simplicity, mild reaction conditions, short reaction times and high yields of the desired product. The scope of the method was evaluated with substituted benzaldehydes and secondary amines. Theoretical foundations are given to explain the participation of quinones as an oxidizing agent in the reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA