Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11139, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750151

RESUMEN

Fertilizers application are widely used to get a higher yield in agricultural fields. Nutrient management can be improved by cultivating leguminous species in order to obtain a better understanding of the mechanisms that increase the amount of available phosphorus (P) and potassium (K) through fertilizer treatments. A pot experiment was conducted to identify the leguminous species (i.e., chickpea and pea) under various fertilizer treatments. Experimental design is as follows: T0 (control: no fertilizer was applied), T1: P applied at the level of (90 kg ha-1), T2: (K applied at the level of 90 kg ha-1), and T3: (PK applied both at 90 kg ha-1). All fertilizer treatments significantly (p < 0.05) improved the nutrient accumulation abilities and enzymes activities. The T3 treatment showed highest N uptake in chickpea was 37.0%, compared to T0. While T3 developed greater N uptake in pea by 151.4% than the control. However, T3 treatment also increased microbial biomass phosphorus in both species i.e., 95.7% and 81.5% in chickpeas and peas, respectively, compared to T0 treatment. In chickpeas, T1 treatment stimulated NAGase activities by 52.4%, and T2 developed URase activities by 50.1% higher than control. In contrast, T3 treatment enhanced both BGase and Phase enzyme activities, i.e., 55.8% and 33.9%, respectively, compared to the T0 treatment. Only the T3 treatment improved the activities of enzymes in the pea species (i.e., BGase was 149.7%, URase was 111.9%, Phase was 81.1%, and NAGase was 70.0%) compared to the control. Therefore, adding combined P and K fertilizer applications to the soil can increase the activity of enzymes in both legume species, and changes in microbial biomass P and soil nutrient availability make it easier for plants to uptake the nutrients.


Asunto(s)
Biomasa , Cicer , Fertilizantes , Fósforo , Microbiología del Suelo , Suelo , Fósforo/metabolismo , Suelo/química , Cicer/metabolismo , Cicer/crecimiento & desarrollo , Fabaceae/metabolismo , Fabaceae/crecimiento & desarrollo , Potasio/metabolismo , Pisum sativum/metabolismo , Pisum sativum/crecimiento & desarrollo , Nitrógeno/metabolismo , Nutrientes/metabolismo
2.
ACS Omega ; 9(12): 13860-13871, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559976

RESUMEN

The potential nutrient uptake abilities of a plant are essential for improving the yield and quality. Green manures can take up a huge amount of macronutrients from the soil. The mechanisms underlying the differences in nutrient uptake capacity among different nonlegume species remain unclear. The plot experiments were conducted to investigate the performance of nonlegume species including forage radish (Raphanus raphanistrum subsp. sativus), oil radish (Raphanus sativus var. Longipinnatus), February orchid (Orychophragmus violaceus L), and rapeseed (Baricca napus), while a ryegrass (Lolium perenne L.) species was used as a control. The study results showed that forage radish had the highest nutrient uptake (N and P), i.e., 322 and 101% in Hunan and 277 and 469% in the Sichuan site, respectively, compared with the control. While the greatest K uptake was found in forage radish, i.e., 123%, and February orchid, 243%, in the Hunan and Sichuan sites. Forage radish also presented higher phosphorus use efficiency in both experimental areas: Hunan by 301% and Sichuan by 633% compared to the control. Significant modifications were found in nutrient availability and enzyme activities after the cultivation of various species. The oil radish enhanced the ß-glucosidase (BG) and leucine-aminopeptidase enzyme activities by 324 and 367%, respectively, while forage radish developed the highest phosphatase (Phase) and N-acetyl-glucosaminidase (NAG) activities compared to the ryegrass in Hunan. In the Sichuan site, the oil radish promotes enzyme activities such as Phase (126%), BG (19%), and NAG (17%), compared to the control. It is concluded that forage radish, oil radish, and February orchid can easily improve soil nutrient quality in green manuring practices and provide valuable nutrient management systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...