Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mitochondrion ; 60: 59-69, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34303005

RESUMEN

ß-Catenin signaling pathway regulates cardiomyocytes proliferation and differentiation, though its involvement in metabolic regulation of cardiomyocytes remains unknown. We used one-day-old mice with cardiac-specific knockout of ß-catenin and neonatal rat ventricular myocytes treated with ß-catenin inhibitor to investigate the role of ß-catenin metabolism regulation in perinatal cardiomyocytes. Transcriptomics of perinatal ß-catenin-ablated hearts revealed a dramatic shift in the expression of genes involved in metabolic processes. Further analysis indicated an inhibition of lipolysis and glycolysis in both in vitro and in vivo models. Finally, we showed that ß-catenin deficiency leads to mitochondria dysfunction via the downregulation of Sirt1/PGC-1α pathway. We conclude that cardiac-specific ß-catenin ablation disrupts the energy substrate shift that is essential for postnatal heart maturation, leading to perinatal lethality of homozygous ß-catenin knockout mice.


Asunto(s)
Metabolismo Energético/genética , Metabolismo Energético/fisiología , Eliminación de Gen , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , beta Catenina/metabolismo , Animales , Animales Recién Nacidos , Regulación hacia Abajo , Ratones , Ratones Noqueados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , beta Catenina/genética
2.
Nanoscale Res Lett ; 12(1): 162, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28264530

RESUMEN

The combination of advantages of using zeolites and gold nanoparticles were aimed to be used for the first time to improve the characteristic properties of ion selective field-effect transistor (ISFET)-based creatinine biosensors. The biosensors with covalently cross-linked creatinine deiminase using glutaraldehyde (GA) were used as a control group, and the effect of different types of zeolites on biosensor responses was investigated in detail by using silicalite, zeolite beta (BEA), nano-sized zeolite beta (Nano BEA) and zeolite BEA including gold nanoparticle (BEA-Gold). The presence of gold nanoparticles was investigated by ICP, STEM-EDX and XPS analysis. The chosen zeolite types allowed investigating the effect of aluminium in the zeolite framework, particle size and the presence of gold nanoparticles in the zeolitic framework.After the synthesis of different types of zeolites in powder form, bare biosensor surfaces were modified by drop-coating of zeolites and creatinine deiminase (CD) was adsorbed on this layer. The sensitivities of the obtained biosensors to 1 mM creatinine decreased in the order of BEA-Gold > BEA > Nano BEA > Silicalite > GA. The highest sensitivity belongs to BEA-Gold, having threefold increase compared to GA, which can be attributed to the presence of gold nanoparticle causing favourable microenvironment for CD to avoid denaturation as well as increased surface area. BEA zeolites, having aluminium in their framework, regardless of particle size, gave higher responses than silicalite, which has no aluminium in its structure. These results suggest that ISFET biosensor responses to creatinine can be tailored and enhanced upon carefully controlled alteration of zeolite parameters used to modify electrode surfaces.

3.
Nanoscale Res Lett ; 11(1): 173, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27033849

RESUMEN

In the work, silicalite particles were used for the surface modification of pH-sensitive field-effect transistors (pH-FETs) with the purpose of developing new creatinine-sensitive biosensor. Creatinine deiminase (CD) adsorbed on the surface of silicalite-coated pH-FET served as a bioselective membrane. The biosensor based on CD immobilized in glutaraldehyde vapor (GA) was taken as control. The creatinine-sensitive biosensor obtained by adsorption on silicalite was shown to have better analytical characteristics (two- to threefold increased sensitivity to creatinine, three- to fourfold lesser response and recovery times, a decrease of the detection limit of creatinine determination to 5 µM, etc.).Additionally, the biosensor based on CD adsorbed on silicalite (Sil/CD) was characterized by high signal reproducibility (relative standard deviation (RSD) for creatinine measurement = 2.6 %) and stability during storage (over 13 months). It was experimentally confirmed that the proposed biosensor was not sensitive either to high concentrations of sodium chloride or to the macromolecular protein fractions and can be used for direct quantitative analysis of creatinine in the blood serum.It was concluded that the method of CD adsorption on silicalite is well-suited for the creation of creatinine-sensitive biosensor with improved working characteristics.

4.
Nanoscale Res Lett ; 11(1): 59, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26842792

RESUMEN

The application of silicalite for improvement of enzyme adsorption on new stainless steel electrodes is reported. Glucose oxidase (GOx) was immobilized by two methods: cross-linking by glutaraldehyde (GOx-GA) and cross-linking by glutaraldehyde along with GOx adsorption on silicalite-modified electrode (SME) (GOx-SME-GA). The GOx-SME-GA biosensors were characterized by a four- to fivefold higher sensitivity than GOx-GA biosensor. It was concluded that silicalite together with GA sufficiently enhances enzyme adhesion on stainless steel electrodes. The developed GOx-SME-GA biosensors were characterized by good reproducibility of biosensor preparation (relative standard deviation (RSD)-18 %), improved signal reproducibility (RSD of glucose determination was 7 %), and good storage stability (29 % loss of activity after 18-day storage). A series of fruit juices and nectars was analyzed using GOx-SME-GA biosensor for determination of glucose concentration. The obtained results showed good correlation with the data of high-performance liquid chromatography (HPLC) (R = 0.99).

5.
Nanoscale Res Lett ; 10: 59, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25852356

RESUMEN

A number of potentiometric biosensors based on coimmobilization of enzymes with different types of zeolite on pH-ion-sensitive field-effect transistor (ISFET) have been developed. Their working characteristics have been determined and compared. It was shown that clinoptilolite and zeolite Beta polymorph A (BEA) are more promising for creating biosensors than zeolite A. Changing the concentration of zeolite BEA in membranes, it is possible to extend the biosensor linear measurement range. The two-layer method of deposition of the enzyme with clinoptilolite was found to provide a significant increase in the biosensor sensitivity to substrates, whereas thermal modification of the zeolite BEA crystals can improve analytical characteristics of potentiometric biosensors for detection of toxic substances. These results show that it is possible to regulate the ISFET characteristics for different enzyme-based biosensors by tailoring the electrode surfaces via different zeolites. This makes zeolites strong candidates for integration into biosensors as ISFET modifiers.

6.
Nanoscale Res Lett ; 10: 149, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25873843

RESUMEN

The application of silicalite for improvement of working characteristics of conductometric enzyme biosensors for determination of sucrose was studied in this research. Biosensors based on different types of silicalite-modified electrodes were studied and compared according to their analytical characteristics. Polyethylenimine/glutaraldehyde/silicalite-modified biosensors showed higher sensitivity compared with others type of biosensors. Moreover, the polyethylenimine/glutaraldehyde/silicalite sucrose biosensors were characterized by high selectivity and signal reproducibility (relative standard deviation (RSD) = 2.78% for glucose measurements and RSD = 3.2% for sucrose measurements). Proposed biosensors were used for determination of sucrose in different samples of beverages. The obtained results had good correlation with results obtained by HPLC. Thus, polyethylenimine/glutaraldehyde/silicalite-modified biosensors have shown perspective characteristics for the development of effective conductometric enzyme biosensors.

7.
Biosens Bioelectron ; 66: 89-94, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25460887

RESUMEN

A phenomenon of changes in photoluminescence of porous silicon at variations in medium pH is proposed to be used as a basis for the biosensor system development. The method of conversion of a biochemical signal into an optical one is applied for direct determination of glucose and urea as well as for inhibitory analysis of heavy metal ions. Changes in the quantum yield of porous silicon photoluminescence occur at varying pH of the tested solution due to the enzyme-substrate reaction. When creating the biosensor systems, the enzymes urease and glucose oxidase (GOD) were used as a bioselective material; their optimal concentrations were experimentally determined. It was shown that the photoluminescence intensity of porous silicon increased by 1.7 times when increasing glucose concentration in the GOD-containing reaction medium from 0 to 3.0mM, and decreased by 1.45 times at the same increase in the urea concentration in the urease-containing reaction medium. The calibration curves of dependence of the biosensor system responses on the substrate concentrations are presented. It is shown that the presence of heavy metal ions (Cu(2+), Pb(2+), and Cd(2+)) in the tested solution causes an inhibition of the enzymatic reactions catalyzed by glucose oxidase and urease, which results in a restoration of the photoluminescence quantum yield of porous silicon. It is proposed to use this effect for the inhibitory analysis of heavy metal ions.


Asunto(s)
Técnicas Biosensibles/métodos , Glucosa/análisis , Mediciones Luminiscentes/métodos , Metales Pesados/análisis , Silicio/química , Urea/análisis , Enzimas Inmovilizadas/metabolismo , Glucosa Oxidasa/metabolismo , Penicillium/enzimología , Porosidad , Glycine max/enzimología , Ureasa/metabolismo
8.
Anal Chem ; 86(11): 5455-62, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24810180

RESUMEN

The majority of biosensors for adenosine-5'-triphosphate (ATP) determination are based on cascades of enzymatic reactions; therefore, they are sensitive to glucose or glycerol (depending on the enzymatic system) as well as to ATP. The presence of unknown concentrations of these substances in the sample greatly complicates the determination of ATP. To overcome this disadvantage of known biosensors, we developed a biosensor system consisting of two biosensors: the first one is based on glucose oxidase and is intended for measuring glucose concentration, and the second one is based on glucose oxidase and hexokinase and is sensitive toward both glucose and ATP. Using glucose concentration measured by the first biosensor, we can analyze the total response to glucose and ATP obtained by the second biosensor. Platinum disc electrodes were used as amperometric transducers. The polyphenilenediamine membrane was deposited onto the surface of platinum electrodes to avoid the response to electroactive substances. The effect of glucose concentration on biosensor determination of ATP was studied. The reproducibility of biosensor responses to glucose and ATP during a day was tested (relative standard deviation, RSD, of responses to glucose was 3-6% and to ATP was 8-12%) as well as storage stability of the biosensors (no decrease of glucose responses and 43% drop of ATP responses during 50 days). The measurements of ATP and glucose in pharmaceutical vials (including mixtures of ATP and glucose) were carried out. It was shown that the developed biosensor system can be used for simultaneous analysis of glucose and ATP concentrations in water solutions.


Asunto(s)
Adenosina Trifosfato/análisis , Técnicas Biosensibles/instrumentación , Glucosa/análisis , Algoritmos , Técnicas Biosensibles/métodos , Electrodos , Enzimas Inmovilizadas/química , Magnesio/análisis , Membranas Artificiales , Reproducibilidad de los Resultados , Soluciones , Transductores
9.
Nanoscale Res Lett ; 9(1): 124, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24636423

RESUMEN

A possibility of the creation of potentiometric biosensor by adsorption of enzyme urease on zeolite was investigated. Several variants of zeolites (nano beta, calcinated nano beta, silicalite, and nano L) were chosen for experiments. The surface of pH-sensitive field-effect transistors was modified with particles of zeolites, and then the enzyme was adsorbed. As a control, we used the method of enzyme immobilization in glutaraldehyde vapour (without zeolites). It was shown that all used zeolites can serve as adsorbents (with different effectiveness). The biosensors obtained by urease adsorption on zeolites were characterized by good analytical parameters (signal reproducibility, linear range, detection limit and the minimal drift factor of a baseline). In this work, it was shown that modification of the surface of pH-sensitive field-effect transistors with zeolites can improve some characteristics of biosensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...