Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 14573, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666849

RESUMEN

In the last century, a plethora of species have shown rapid phenological changes in response to climate change. Among animals, amphibians exhibit some of the greatest responses since their activity strongly depends on temperature and rainfall regimes. These shifts in phenology can have negative consequences for amphibian fitness. Thus, understanding phenological changes in amphibians is pivotal to design conservation actions to mitigate climate change effects. We used data on Common Spadefoot Toad (Pelobates fuscus) reproductive migration to wetlands over a period of 8 years in Italy to (i) identify the factors related to breeding migrations, (ii) assess potential phenological shifts in the breeding period, and (iii) determine which climatic factors are related to the observed phenological shifts. Our results showed that toads migrate to spawning sites preferably in early spring, on rainy days with temperatures of 9-14 °C, and with high humidity. Furthermore, despite an increase in average temperature across the study period, we observed a delay in the start of breeding migrations of 12.4 days over 8 years. This counterintuitive pattern was the result of a succession of hot and dry years that occurred in the study area, highlighting that for ephemeral pond breeders, precipitation could have a larger impact than temperature on phenology. Our results belie the strong presumption that climate change will shift amphibian phenology toward an earlier breeding migration and underline the importance of closely investigating the environmental factors related to species phenology.


Asunto(s)
Bufonidae , Animales , Anuros , Bufo bufo , Temperatura
2.
Mol Ecol Resour ; 21(1): 183-200, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32755053

RESUMEN

The Odonata are considered among the most endangered freshwater faunal taxa. Their DNA-based monitoring relies on validated reference data sets that are often lacking or do not cover important biogeographical centres of diversification. This study presents the results of a DNA barcoding campaign on Odonata, based on the standard 658-bp 5' end region of the mitochondrial COI gene, involving the collection of 812 specimens (409 of which barcoded) from peninsular Italy and its main islands (328 localities), belonging to all the 88 species (31 Zygoptera and 57 Anisoptera) known from the country. Additional BOLD and GenBank data from Holarctic samples expanded the data set to 1,294 DNA barcodes. A multi-approach species delimitation analysis involving two distance (OT and ABGD) and four tree-based (PTP, MPTP, GMYC and bGMYC) methods was used to explore these data. Of the 88 investigated morphospecies, 75 (85%) unequivocally corresponded to distinct molecular operational units, whereas the remaining ones were classified as 'warnings' (i.e. showing a mismatch between morphospecies assignment and DNA-based species delimitation). These results are in contrast with other DNA barcoding studies on Odonata showing up to 95% of identification success. The species causing warnings were grouped into three categories depending on if they showed low, high or mixed genetic divergence patterns. The analysis of haplotype networks revealed unexpected intraspecific complexity at the Italian, Palearctic and Holarctic scale, possibly indicating the occurrence of cryptic species. Overall, this study provides new insights into the taxonomy of odonates and a valuable basis for future DNA and eDNA-based monitoring studies.


Asunto(s)
Código de Barras del ADN Taxonómico , Evolución Molecular , Haplotipos , Odonata/clasificación , Animales , Italia , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...