Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-8, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37578047

RESUMEN

Regarding the significance of SARS-CoV-2, scientists have shown considerable interest in developing effective drugs. Inhibitors for PLpro are the primary strategies for locating suitable COVID-19 drugs. Natural compounds comprise the majority of COVID-19 drugs. Due to limitations on the safety of clinical trials in cases of COVID, computational methods are typically utilized for inhibition studies. Whereas papain is highly similar to PLpro and is entirely safe, the current study aimed to examine several plant secondary metabolites to identify the most effective papain inhibitor and validate the results using molecular dynamics and docking. This simulation was conducted identically for PLpro and the optimal inhibitor. The results indicated that the experimental results are comparable to those obtained In-Silico, and the inhibition effects of Chlorogenic acid (CGA) on papain attained in the experiment were validated (IC50=0.54 mM). CGA as an inhibitor was located in the active site of PLpro and papain (total energy -2009410 and -456069 kJ/mol, respectively) at the desired location and distance. The study revealed that CGA and its derivatives are effective PLpro inhibitors against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.

2.
Phytochemistry ; 194: 113022, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34826793

RESUMEN

Demands for peroxidases (POX)s with diverse physicochemical properties have steadily grown as more applications of POXs are demonstrated. Plants are among the best sources of versatile POXs, and plant biotechnology, as an agricultural hassle-free technology, promises to circumvent the limitations of natural resource exploitation and to address the demands. Following this trend, it was shown that POX production steadily increased during the 31-day subculture of Alkanna frigida (from Boraginaceae) callus on Murashige-Skoog medium containing 2,4-dichlorophenoxyacetic acid (10-6 M) and kinetin (10-5 M). The purified cationic enzyme (POXalf) maintained its optimal activity over pH 4-7 for 2 years. It was resistant to H2O2 high concentrations (IC50 = 543.7 mM) and showed high specific activity in the reaction with phenol (4320.5 AU mg-1 > 20-fold of HRP AU). Furthermore, the specificity constant ratio of guaiacol to phenol indicated a 100 times faster reaction of POXalf with guaiacol. However, in contrast to HRP, it had little effect on diazo derivatives of aniline and meta-diaminobenzene. Based on the resulting primary structure from the tandem mass analysis, the POXalf 3D structure was constructed via homology modelling. Despite the high topological similarity between the HRP and POXalf structures, there were important differences between the active site pockets that could explain the observed differences in the corresponding substrate spectra and the specific activities. Considering the dynamics of POXalf production, its inactivity towards IAA and its high affinity for guaiacol, POXalf may have associated roles with A. frigida cell wall construction and monolignol metabolism.


Asunto(s)
Boraginaceae , Peroxidasa , Técnicas de Cultivo de Célula , Peróxido de Hidrógeno , Peroxidasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...