Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Rev ; 122(17): 14055-14065, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35133794

RESUMEN

While the application of cryogenic electron microscopy (cryo-EM) to helical polymers in biology has a long history, due to the huge number of helical macromolecular assemblies in viruses, bacteria, archaea, and eukaryotes, the use of cryo-EM to study synthetic soft matter noncovalent polymers has been much more limited. This has mainly been due to the lack of familiarity with cryo-EM in the materials science and chemistry communities, in contrast to the fact that cryo-EM was developed as a biological technique. Nevertheless, the relatively few structures of self-assembled peptide nanotubes and ribbons solved at near-atomic resolution by cryo-EM have demonstrated that cryo-EM should be the method of choice for a structural analysis of synthetic helical filaments. In addition, cryo-EM has also demonstrated that the self-assembly of soft matter polymers has enormous potential for polymorphism, something that may be obscured by techniques such as scattering and spectroscopy. These cryo-EM structures have revealed how far we currently are from being able to predict the structure of these polymers due to their chaotic self-assembly behavior.


Asunto(s)
Polímeros , Virus , Microscopía por Crioelectrón/métodos , Sustancias Macromoleculares , Virus/química
2.
Nanotechnology ; 33(6)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34715680

RESUMEN

Significant efforts have recently been invested in assessing the physical and chemical properties of microbial nanowires for their promising role in developing alternative renewable sources of electricity, bioelectronic materials and implantable sensors. One of their outstanding properties, the ever-desirable conductivity has been the focus of numerous studies. However, the lack of a straightforward and reliable method for measuring it seems to be responsible for the broad variability of the reported data. Routinely employed methods tend to underestimate or overestimate conductivity by several orders of magnitude. In this work, synthetic peptide nanowires conductivity is interrogated employing a non-destructive measurement technique developed on a terahertz scanning near-field microscope to test if peptide aromaticity leads to higher electrical conductivity. Our novel peptide conductivity measurement technique, based on triple standards calibration method, shows that in the case of two biopolymer mimicking peptides, the sample incorporating aromatic residues (W6) is about six times more conductive than the negative control (L6). To the best of our knowledge, this is the first report of a quantitative nano-scale terahertz s-SNOM investigation of peptides. These results prove the suitability of the terahertz radiation-based non-destructive approach in tandem with the designer peptides choice as model test subjects. This approach requires only simple sample preparation, avoids many of the pitfalls of typical contact-based conductivity measurement techniques and could help understanding fundamental aspects of nature's design of electron transfer in biopolymers.


Asunto(s)
Conductividad Eléctrica , Nanocables/química , Péptidos/química , Espectroscopía de Terahertz , Microscopía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...