Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Cell Mater ; 35: 335-348, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29873804

RESUMEN

In engineering of tissue analogues, upscaling to clinically-relevant sized constructs remains a significant challenge. The successful integration of a vascular network throughout the engineered tissue is anticipated to overcome the lack of nutrient and oxygen supply to residing cells. This work aimed at developing a multiscale bone-tissue-specific vascularisation strategy. Engineering pre-vascularised bone leads to biological and fabrication dilemmas. To fabricate channels endowed with an endothelium and suitable for osteogenesis, rather stiff materials are preferable, while capillarisation requires soft matrices. To overcome this challenge, gelatine-methacryloyl hydrogels were tailored by changing the degree of functionalisation to allow for cell spreading within the hydrogel, while still enabling endothelialisation on the hydrogel surface. An additional challenge was the combination of the multiple required cell-types within one biomaterial, sharing the same culture medium. Consequently, a new medium composition was investigated that simultaneously allowed for endothelialisation, capillarisation and osteogenesis. Integrated multipotent mesenchymal stromal cells, which give rise to pericyte-like and osteogenic cells, and endothelial-colony-forming cells (ECFCs) which form capillaries and endothelium, were used. Based on the aforementioned optimisation, a construct of 8 × 8 × 3 mm, with a central channel of 600 µm in diameter, was engineered. In this construct, ECFCs covered the channel with endothelium and osteogenic cells resided in the hydrogel, adjacent to self-assembled capillary-like networks. This study showed the promise of engineering complex tissue constructs by means of human primary cells, paving the way for scaling-up and finally overcoming the challenge of engineering vascularised tissues.


Asunto(s)
Huesos/fisiología , Células Endoteliales/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Huesos/efectos de los fármacos , Capilares/citología , Medios de Cultivo/farmacología , Células Endoteliales/efectos de los fármacos , Gelatina/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Metacrilatos/química , Neovascularización Fisiológica/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Pericitos/citología , Sus scrofa
2.
Am J Transplant ; 16(3): 794-807, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26663737

RESUMEN

The utilization of normothermic machine perfusion (NMP) may be an effective strategy to resuscitate livers from donation after circulatory death (DCD). There is no consensus regarding the efficacy of different perfusates on graft and bile duct viability. The aim of this study was to compare, in an NMP porcine DCD model, the preservation potential of three different perfusates. Twenty porcine livers with 60 min of warm ischemia were separated into four preservation groups: cold storage (CS), NMP with Steen solution (Steen; XVIVO Perfusion Inc., Denver, CO), Steen plus red blood cells (RBCs), or whole blood (WB). All livers were preserved for 10 h and reperfused to simulate transplantation for 24 h. During preservation, the NMP with Steen group presented the highest hepatocellular injury. At reperfusion, the CS group had the lowest bile production and the worst hepatocellular injury compared with all other groups, followed by NMP with Steen; the Steen plus RBC and WB groups presented the best functional and hepatocellular injury outcomes, with WB livers showing lower aspartate aminotransferase release and a trend toward better results for most parameters. Based on our results, a perfusate that contains an oxygen carrier is most effective in a model of NMP porcine DCD livers compared with Steen solution. Specifically, WB-perfused livers showed a trend toward better outcomes compared with Steen plus RBCs.


Asunto(s)
Muerte Súbita Cardíaca , Hígado/fisiología , Preservación de Órganos/métodos , Donantes de Tejidos , Obtención de Tejidos y Órganos/métodos , Animales , Hemodinámica , Trasplante de Hígado , Consumo de Oxígeno , Perfusión , Regeneración , Porcinos , Isquemia Tibia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...