Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 82: 104167, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35843175

RESUMEN

BACKGROUND: In malaria-endemic areas, subjects from specific groups like Fulani have a peculiar protection against malaria, with high levels of IgM but also frequent anaemia and splenomegaly. The mechanisms underlying this phenotype remain elusive. METHODS: In a cohort study set up in Benin, West Africa, after a careful evaluation of malaria-related phenotypes, we measured the deformability of circulating erythrocytes in genetically distinct groups (including Fulani) living in sympatry, using ektacytometry and microsphiltration, a mimic of how the spleen clears rigid erythrocytes. Heritability of erythrocytes deformability was calculated, followed by a genome-wide association study (GWAS) of the same phenotype. FINDINGS: Compared to non-Fulani, Fulani displayed a higher deformability of circulating erythrocytes, pointing to an enhanced clearance of rigid erythrocytes by the spleen. This phenotype was observed in individuals displaying markers of Plasmodium falciparum infection. The heritability of this new trait was high, with a strong multigenic component. Five of the top 10 genes selected by a population structure-adjusted GWAS, expressed in the spleen, are potentially involved in splenic clearance of erythrocytes (CHERP, MB, PALLD, SPARC, PDE10A), through control of vascular tone, collagen synthesis and macrophage activity. INTERPRETATION: In specific ethnic groups, genetically-controlled processes likely enhance the innate retention of infected and uninfected erythrocytes in the spleen, explaining splenomegaly, anaemia, cryptic intrasplenic parasite loads, hyper-IgM, and partial protection against malaria. Beyond malaria-related phenotypes, inherited splenic hyper-filtration of erythrocytes may impact the pathogenesis of other hematologic diseases. FUNDING: ANR, National Geographic Society, IMEA, IRD, and Région Ile-de-France.


Asunto(s)
Anemia , Malaria Falciparum , Malaria , Anemia/genética , Estudios de Cohortes , Proteínas de Unión al ADN/genética , Eritrocitos/parasitología , Estudio de Asociación del Genoma Completo , Humanos , Inmunidad Innata , Inmunoglobulina M , Malaria Falciparum/parasitología , Proteínas de la Membrana/genética , Hidrolasas Diéster Fosfóricas , Plasmodium falciparum/genética , Proteínas de Unión al ARN/genética , Bazo , Esplenomegalia/genética
2.
Life (Basel) ; 12(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35629326

RESUMEN

The lack of curative options for pulmonary arterial hypertension drives important research to understand the mechanisms underlying this devastating disease. Among the main identified pathways, the platelet-derived growth factor (PDGF) pathway was established to control vascular remodeling and anti-PDGF receptor (PDGFR) drugs were shown to reverse the disease in experimental models. Four different isoforms of PDGF are produced by various cell types in the lung. PDGFs control vascular cells migration, proliferation and survival through binding to their receptors PDGFRα and ß. They elicit multiple intracellular signaling pathways which have been particularly studied in pulmonary smooth muscle cells. Activation of the PDGF pathway has been demonstrated both in patients and in pulmonary hypertension (PH) experimental models. Tyrosine kinase inhibitors (TKI) are numerous but without real specificity and Imatinib, one of the most specific, resulted in beneficial effects. However, adverse events and treatment discontinuation discouraged to pursue this therapy. Novel therapeutic strategies are currently under experimental evaluation. For TKI, they include intratracheal drug administration, low dosage or nanoparticles delivery. Specific anti-PDGF and anti-PDGFR molecules can also be designed such as new TKI, soluble receptors, aptamers or oligonucleotides.

3.
J Am Heart Assoc ; 11(7): e023021, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35348002

RESUMEN

Background Platelet-derived growth factor is a major regulator of the vascular remodeling associated with pulmonary arterial hypertension. We previously showed that protein widely 1 (PW1+) vascular progenitor cells participate in early vessel neomuscularization during experimental pulmonary hypertension (PH) and we addressed the role of the platelet-derived growth factor receptor type α (PDGFRα) pathway in progenitor cell-dependent vascular remodeling and in PH development. Methods and Results Remodeled pulmonary arteries from patients with idiopathic pulmonary arterial hypertension showed an increased number of perivascular and vascular PW1+ cells expressing PDGFRα. PW1nLacZ reporter mice were used to follow the fate of pulmonary PW1+ progenitor cells in a model of chronic hypoxia-induced PH development. Under chronic hypoxia, PDGFRα inhibition prevented the increase in PW1+ progenitor cell proliferation and differentiation into vascular smooth muscle cells and reduced pulmonary vessel neomuscularization, but did not prevent an increased right ventricular systolic pressure or the development of right ventricular hypertrophy. Conversely, constitutive PDGFRα activation led to neomuscularization via PW1+ progenitor cell differentiation into new smooth muscle cells and to PH development in male mice without fibrosis. In vitro, PW1+ progenitor cell proliferation, but not differentiation, was dependent on PDGFRα activity. Conclusions These results demonstrate a major role of PDGFRα signaling in progenitor cell-dependent lung vessel neomuscularization and vascular remodeling contributing to PH development, including in idiopathic pulmonary arterial hypertension patients. Our findings suggest that PDGFRα blockers may offer a therapeutic add-on strategy to combine with current pulmonary arterial hypertension treatments to reduce vascular remodeling. Furthermore, our study highlights constitutive PDGFRα activation as a novel experimental PH model.


Asunto(s)
Hipertensión Pulmonar , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Animales , Proliferación Celular , Células Cultivadas , Humanos , Hipertensión Pulmonar/metabolismo , Hipoxia , Pulmón , Masculino , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Remodelación Vascular
4.
Cells ; 10(6)2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071347

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by an important occlusive vascular remodeling with the production of new endothelial cells, smooth muscle cells, myofibroblasts, and fibroblasts. Identifying the cellular processes leading to vascular proliferation and dysfunction is a major goal in order to decipher the mechanisms leading to PAH development. In addition to in situ proliferation of vascular cells, studies from the past 20 years have unveiled the role of circulating and resident vascular in pulmonary vascular remodeling. This review aims at summarizing the current knowledge on the different progenitor and stem cells that have been shown to participate in pulmonary vascular lesions and on the pathways regulating their recruitment during PAH. Finally, this review also addresses the therapeutic potential of circulating endothelial progenitor cells and mesenchymal stem cells.


Asunto(s)
Hipertensión Arterial Pulmonar/patología , Células Madre , Remodelación Vascular , Animales , Células Cultivadas , Humanos , Células Madre/citología , Células Madre/patología
5.
J Cereb Blood Flow Metab ; 37(2): 396-412, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26762506

RESUMEN

Insulin-like growth factors control numerous processes, namely somatic growth, metabolism and stress resistance, connecting this pathway to aging and age-related diseases. Insulin-like growth factor signaling also impacts on neurogenesis, neuronal survival and structural plasticity. Recent reports demonstrated that diminished insulin-like growth factor signaling confers increased stress resistance in brain and other tissues. To better understand the role of neuronal insulin-like growth factor signaling in neuroprotection, we inactivated insulin-like growth factor type-1-receptor in forebrain neurons using conditional Cre-LoxP-mediated gene targeting. We found that brain structure and function, including memory performance, were preserved in insulin-like growth factor receptor mutants, and that certain characteristics improved, notably synaptic transmission in hippocampal neurons. To reveal stress-related roles of insulin-like growth factor signaling, we challenged the brain using a stroke-like insult. Importantly, when charged with hypoxia-ischemia, mutant brains were broadly protected from cell damage, neuroinflammation and cerebral edema. We also found that in mice with insulin-like growth factor receptor knockout specifically in forebrain neurons, a substantial systemic upregulation of growth hormone and insulin-like growth factor-I occurred, which was associated with significant somatic overgrowth. Collectively, we found strong evidence that blocking neuronal insulin-like growth factor signaling increases peripheral somatotropic tone and simultaneously protects the brain against hypoxic-ischemic injury, findings that may contribute to developing new therapeutic concepts preventing the disabling consequences of stroke.


Asunto(s)
Eliminación de Gen , Hormona del Crecimiento/metabolismo , Neuroprotección , Prosencéfalo/patología , Receptor IGF Tipo 1/genética , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Prosencéfalo/metabolismo , Accidente Cerebrovascular/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA