Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSphere ; 6(1)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441407

RESUMEN

Staphylococcus aureus is a human pathogen that causes serious diseases, ranging from skin infections to septic shock. Bacteriophages (phages) are both natural killers of S. aureus, offering therapeutic possibilities, and important vectors of horizontal gene transfer (HGT) in the species. Here, we used high-throughput approaches to understand the genetic basis of strain-to-strain variation in sensitivity to phages, which defines the host range. We screened 259 diverse S. aureus strains covering more than 40 sequence types for sensitivity to eight phages, which were representatives of the three phage classes that infect the species. The phages were variable in host range, each infecting between 73 and 257 strains. Using genome-wide association approaches, we identified putative loci that affect host range and validated their function using USA300 transposon knockouts. In addition to rediscovering known host range determinants, we found several previously unreported genes affecting bacterial growth during phage infection, including trpA, phoR, isdB, sodM, fmtC, and relA We used the data from our host range matrix to develop predictive models that achieved between 40% and 95% accuracy. This work illustrates the complexity of the genetic basis for phage susceptibility in S. aureus but also shows that with more data, we may be able to understand much of the variation. With a knowledge of host range determination, we can rationally design phage therapy cocktails that target the broadest host range of S. aureus strains and address basic questions regarding phage-host interactions, such as the impact of phage on S. aureus evolution.IMPORTANCEStaphylococcus aureus is a widespread, hospital- and community-acquired pathogen, many strains of which are antibiotic resistant. It causes diverse diseases, ranging from local to systemic infection, and affects both the skin and many internal organs, including the heart, lungs, bones, and brain. Its ubiquity, antibiotic resistance, and disease burden make new therapies urgent. One alternative therapy to antibiotics is phage therapy, in which viruses specific to infecting bacteria clear infection. In this work, we identified and validated S. aureus genes that influence phage host range-the number of strains a phage can infect and kill-by testing strains representative of the diversity of the S. aureus species for phage host range and associating the genome sequences of strains with host range. These findings together improved our understanding of how phage therapy works in the bacterium and improve prediction of phage therapy efficacy based on the predicted host range of the infecting strain.


Asunto(s)
Especificidad del Huésped/genética , Fagos de Staphylococcus/fisiología , Staphylococcus aureus/genética , Staphylococcus aureus/virología , Genoma Bacteriano , Estudio de Asociación del Genoma Completo/métodos , Humanos , Fenotipo , Infecciones Estafilocócicas/microbiología
2.
Genetics ; 214(2): 295-303, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31843756

RESUMEN

Standard methods for case-control association studies of rare variation often treat disease outcome as a dichotomous phenotype. However, both theoretical and experimental studies have demonstrated that subjects with a family history of disease can be enriched for risk variation relative to subjects without such history. Assuming family history information is available, this observation motivates the idea of replacing the standard dichotomous outcome variable used in case-control studies with a more informative ordinal outcome variable that distinguishes controls (0), sporadic cases (1), and cases with a family history (2), with the expectation that we should observe increasing number of risk variants with increasing category of the ordinal variable. To leverage this expectation, we propose a novel rare-variant association test that incorporates family history information based on our previous GAMuT framework for rare-variant association testing of multivariate phenotypes. We use simulated data to show that, when family history information is available, our new method outperforms standard rare-variant association methods, like burden and SKAT tests, that ignore family history. We further illustrate our method using a rare-variant study of cleft lip and palate.


Asunto(s)
Enfermedad/genética , Estudios de Asociación Genética/métodos , Variación Genética/genética , Simulación por Computador , Familia , Genotipo , Humanos , Modelos Genéticos , Modelos Estadísticos , Linaje , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...