Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Sci Rep ; 13(1): 17481, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838793

RESUMEN

This study was undertaken to determine whether a smaller lung volume or a stiffer lung tissue accounts for the greater lung elastance of C57BL/6 than BALB/c mice. The mechanical properties of the respiratory system and lung volumes were measured with the flexiVent and compared between male C57BL/6 and BALB/c mice (n = 9). The size of the excised lung was also measured by volume liquid displacement. One lobe was then subjected to sinusoidal strains in vitro to directly assess the mechanical properties of the lung tissue, and another one was used to quantify the content of hydroxyproline. In vivo elastance was markedly greater in C57BL/6 than BALB/c mice based on 5 different readouts. For example, respiratory system elastance was 24.5 ± 1.7 vs. 21.5 ± 2.4 cmH2O/mL in C57BL/6 and BALB/c mice, respectively (p = 0.007). This was not due to a different lung volume measured by displaced liquid volume. On the isolated lobes, both elastance and the hydroxyproline content were significantly greater in C57BL/6 than BALB/c mice. These results suggest that the lung elastance of C57BL/6 mice is greater than BALB/c mice not because of a smaller lung volume but because of a stiffer lung tissue due to a greater content of collagen.


Asunto(s)
Pulmón , Ratones , Animales , Masculino , Ratones Endogámicos BALB C , Hidroxiprolina , Ratones Endogámicos C57BL , Rendimiento Pulmonar
2.
Respir Care ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311630

RESUMEN

BACKGROUND: High-flow nasal cannula (HFNC) reduces the need for intubation in adult subject with acute respiratory failure. Changes in hypobaric hypoxemia have not been studied for subject with an HFNC in ICUs at altitudes > 2,600 m above sea level. In this study, we investigated the efficacy of HFNC treatment in subjects with COVID-19 at high altitudes. We hypothesized that progressive hypoxemia and the increase in breathing frequency associated with COVID-19 in high altitudes affect the success of HFNC therapy and may also influence the performance of the traditionally used predictors of success and failure. METHODS: This was a prospective cohort study of subjects >18 y with a confirmed diagnosis of COVID-19-induced ARDS requiring HFNC who were admitted to the ICU. Subjects were followed up during the 28 d of HFNC treatment or until failure. RESULTS: One hundred and eight subjects were enrolled. At admission to the ICU, FIO2 delivery between 0.5-0.8 (odds ratio 0.38 [95% CI 0.17-0.84]) was associated with a better response to HFNC therapy than oxygen delivery on admission between 0.8-1.0 (odds ratio 3.58 [95% CI 1.56-8.22]). This relationship continued during follow-ups at 2, 6, 12, and 24 h, with a progressive increase in the risk of failure (odds ratio 24 h 13.99 [95% CI 4.32-45.26]). A new cutoff for the ratio of oxygen saturation (ROX) index (ROX ≥ 4.88) after 24 h of HFNC administration was demonstrated to be the best predictor of success (odds ratio 11.0 [95% CI 3.3-47.0]). CONCLUSIONS: High-altitude subjects treated with HFNC for COVID-19 showed a high risk of respiratory failure and progressive hypoxemia when FIO2 requirements were > 0.8 after 24 h of treatment. In these subjects, personalized management should include continuous monitoring of individual clinical conditions (such as oxygenation indices, with cutoffs adapted to those corresponding to high-altitude cities).

3.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37373327

RESUMEN

The brain requires over one-fifth of the total body oxygen demand for normal functioning. At high altitude (HA), the lower atmospheric oxygen pressure inevitably challenges the brain, affecting voluntary spatial attention, cognitive processing, and attention speed after short-term, long-term, or lifespan exposure. Molecular responses to HA are controlled mainly by hypoxia-inducible factors. This review aims to summarize the cellular, metabolic, and functional alterations in the brain at HA with a focus on the role of hypoxia-inducible factors in controlling the hypoxic ventilatory response, neuronal survival, metabolism, neurogenesis, synaptogenesis, and plasticity.


Asunto(s)
Aclimatación , Altitud , Humanos , Aclimatación/fisiología , Hipoxia/metabolismo , Oxígeno , Encéfalo/metabolismo , Cognición
4.
Front Physiol ; 14: 1297872, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38298567

RESUMEN

Previous studies on the cardiac data of healthy permanent residents living in high-altitude regions such as Tibet and the Andes have yielded inconsistent findings and significant disparities. These discrepancies can be mainly attributed to the invasive methods conventionally used for parameter evaluation. However, with the introduction of cutting-edge ultrasound technology, there is now an innovative approach to addressing and reconciling these variations. In this pilot study, we employed an ultrasound-based cardiac output monitoring (USCOM) device to evaluate cardiac output and related hemodynamic variables in a group of 20 healthy high-altitude Andean residents (comprising 10 men and 10 women) aged between 26 and 35 years old. The monocentric study was carried out in La Paz, Bolivia, located between at an altitude of 3,600-4,000 m. A total of 60 hemodynamic measurements were evaluated, accounting for three technical replicates per subject. Our results showed strong intrasubject reproducibility and revealed important differences related to both sex and hemodynamic parameters in highlanders compared to individuals residing at sea level. We conclude that USCOM represents a highly reliable technology for performing hemodynamic measurements in high-altitude residents. Our preliminary findings underscore the need for larger studies, encompassing larger sample sizes, specifically tailored to gender considerations, and extendable to broader highland populations. These findings have special significant implications for the management of hemodynamics in intensive care and postoperative settings, warranting further comprehensive research efforts.

5.
Front Physiol ; 13: 949378, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105289

RESUMEN

Hypoxia is common in lung diseases and a potent stimulator of the long non-coding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1). Herein, we investigated the impact of Malat1 on hypoxia-induced lung dysfunction in mice. Malat1-deficient mice and their wild-type littermates were tested after 8 days of normoxia or hypoxia (10% oxygen). Hypoxia decreased elastance of the lung by increasing lung volume and caused in vivo hyperresponsiveness to methacholine without altering the contraction of airway smooth muscle. Malat1 deficiency also modestly decreased lung elastance but only when tested at low lung volumes and without altering lung volume and airway smooth muscle contraction. The in vivo responsiveness to methacholine was also attenuated by Malat1 deficiency, at least when elastance, a readout sensitive to small airway closure, was used to assess the response. More impressively, in vivo hyperresponsiveness to methacholine caused by hypoxia was virtually absent in Malat1-deficient mice, especially when hysteresivity, a readout sensitive to small airway narrowing heterogeneity, was used to assess the response. Malat1 deficiency also increased the coefficient of oxygen extraction and decreased ventilation in conscious mice, suggesting improvements in gas exchange and in clinical signs of respiratory distress during natural breathing. Combined with a lower elastance at low lung volumes at baseline, as well as a decreased propensity for small airway closure and narrowing heterogeneity during a methacholine challenge, these findings represent compelling evidence suggesting that the lack of Malat1 protects the access to alveoli for air entering the lung.

7.
Respir Physiol Neurobiol ; 299: 103868, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35150939

RESUMEN

Patients admitted to the Intensive Care Unit (ICU) with acute hypoxemic respiratory failure automatically receive oxygen therapy to improve inspiratory oxygen fraction (FiO2). Supplemental oxygen is the most prescribed drug for critically ill patients regardless of altitude of residence. In high altitude dwellers (i.e. in La Paz [≈3,400 m] and El Alto [≈4,150 m] in Bolivia), a peripheral oxygen saturation (SatpO2) of 89-95% and an arterial partial pressure of oxygen (PaO2) of 50-67 mmHg (lower as altitude rises), are considered normal values ​​for arterial blood. Consequently, it has been suggested that limiting oxygen therapy to maintain SatpO2 around normoxia may help avoid episodes of hypoxemia, hyperoxemia, intermittent hypoxemia, and ultimately, mortality. In this study, we evaluated the impact of oxygen therapy on the mortality of critically ill COVID-19 patients who permanently live at high altitudes. A multicenter cross-sectional descriptive observational study was performed on 100 patients admitted to the ICU at the "Clinica Los Andes" (in La Paz city) and "Agramont" and "Del Norte" Hospitals (in El Alto city). Our results show that: 1) as expected, fatal cases were detected only in patients who required intubation and connection to invasive mechanical ventilation as a last resort to overcome their life-threatening desaturation; 2) among intubated patients, prolonged periods in normoxia are associated with survival, prolonged periods in hypoxemia are associated with death, and time spent in hyperoxemia shows no association with survival or mortality; 3) the oxygenation limits required to effectively support the intubated patients' survival in the ICU are between 89% and 93%; 4) among intubated patients with similar periods of normoxemic oxygenation, those with better SOFA scores survive; and 5) a lower frequency of observable reoxygenation events is not associated with survival. In conclusion, our findings indicate that high-altitude patients entering an ICU at altitudes of 3,400 - 4,150 m should undergo oxygen therapy to maintain oxygenation levels between 89 and 93 %.


Asunto(s)
COVID-19/fisiopatología , COVID-19/terapia , Cuidados Críticos/normas , Terapia por Inhalación de Oxígeno/normas , Saturación de Oxígeno/fisiología , Adulto , Anciano , Altitud , Bolivia , Cuidados Críticos/métodos , Enfermedad Crítica , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Terapia por Inhalación de Oxígeno/métodos
8.
Front Pharmacol ; 12: 727326, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34594222

RESUMEN

Erythropoietin (EPO) regulates respiration under conditions of normoxia and hypoxia through interaction with the respiratory centers of the brainstem. Here we investigate the dose-dependent impact of EPO in the CB response to hypoxia and hypercapnia. We show, in isolated "en bloc" carotid body (CB) preparations containing the carotid sinus nerve (CSN) from adult male Sprague Dawley rats, that EPO acts as a stimulator of CSN activity in response to hypoxia at concentrations below 0.5 IU/ml. Under hypercapnic conditions, EPO did not influence the CSN response. EPO concentrations above 0.5 IU/ml decreased the response of the CSN to both hypoxia and hypercapnia, reaching complete inhibition at 2 IU/ml. The inhibitory action of high-dose EPO on the CSN activity might result from an increase in nitric oxide (NO) production. Accordingly, CB preparations were incubated with 2 IU/ml EPO and the unspecific NO synthase inhibitor (L-NAME), or the neuronal-specific NO synthase inhibitor (7NI). Both NO inhibitors fully restored the CSN activity in response to hypoxia and hypercapnia in presence of EPO. Our results show that EPO activates the CB response to hypoxia when its concentration does not exceed the threshold at which NO inhibitors masks EPO's action.

9.
PLoS One ; 16(8): e0255144, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34343179

RESUMEN

AIMS: The objective of this study is to analyze how the impact of Diabetes Mellitus [DM] in patients with COVID-19 varies according to altitudinal gradient. METHODS: We obtained 1,280,806 records from adult patients with COVID-19 and DM to analyze the probability of COVID-19, development of COVID-19 pneumonia, hospitalization, intubation, admission to the Intensive Care Unit [ICU] and case-fatality rates [CFR]. Variables were controlled by age, sex and altitude of residence to calculate adjusted prevalence and prevalence ratios. RESULTS: Patients with DM had a 21.8% higher prevalence of COVID-19 and an additional 120.2% higher prevalence of COVID-19 pneumonia. The adjusted prevalence was also higher for these outcomes as well as for hospitalization, intubation and ICU admission. COVID-19 and pneumonia patients with DM had a 97.0% and 19.4% higher CFR, respectively. With increasing altitudes, the probability of being a confirmed COVID-19 case and the development of pneumonia decreased along CFR for patients with and without DM. However, COVID-19 patients with DM were more likely to require intubation when residing at high altitude. CONCLUSIONS: The study suggests that patients with DM have a higher probability of being a confirmed COVID-19 case and developing pneumonia. Higher altitude had a protective relationship against SARS-CoV-2 infection; however, it may be associated with more severe cases in patients with and without DM. High altitude decreases CFR for all COVID-19 patients. Our work also shows that women are less affected than men regardless of altitude.


Asunto(s)
Altitud , COVID-19/patología , Diabetes Mellitus/patología , Adulto , Anciano , COVID-19/mortalidad , COVID-19/virología , Complicaciones de la Diabetes , Diabetes Mellitus/epidemiología , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Unidades de Cuidados Intensivos , Masculino , México/epidemiología , Persona de Mediana Edad , Prevalencia , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad , Tasa de Supervivencia
10.
Commun Biol ; 4(1): 938, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354241

RESUMEN

Erythropoietin (EPO) improves neuronal mitochondrial function and cognition in adults after brain injury and in those afflicted by psychiatric disorders. However, the influence of EPO on mitochondria and cognition during development remains unexplored. We previously observed that EPO stimulates hippocampal-specific neuronal maturation and synaptogenesis early in postnatal development in mice. Here we show that EPO promotes mitochondrial respiration in developing postnatal hippocampus by increasing mitochondrial content and enhancing cellular respiratory potential. Ultrastructurally, mitochondria profiles and total vesicle content were greater in presynaptic axon terminals, suggesting that EPO enhances oxidative metabolism and synaptic transmission capabilities. Behavioural tests of hippocampus-dependent memory at early adulthood, showed that EPO improves spatial and short-term memory. Collectively, we identify a role for EPO in the murine postnatal hippocampus by promoting mitochondrial function throughout early postnatal development, which corresponds to enhanced cognition by early adulthood.


Asunto(s)
Cognición/efectos de los fármacos , Eritropoyetina/administración & dosificación , Hipocampo/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Neuronas/efectos de los fármacos , Animales , Hipocampo/fisiología , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Neuronas/metabolismo , Distribución Aleatoria
11.
Respir Physiol Neurobiol ; 292: 103709, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34087493

RESUMEN

Previous studies suggested that erythropoietin (EPO) may protect against severe COVID-19-induced injuries, ultimately preventing mortality. This hypothesis is based on the fact that, in addition to promoting the increase in red blood cells, EPO is an anti-inflammatory, anti-apoptotic and protective factor in several non-erythropoietic tissues. Furthermore, EPO promotes nitric oxide production in the hypoxic lung and stimulates ventilation by interacting with the respiratory centers of the brainstem. Given that EPO in the blood is increased at high-altitude, we evaluated the serum levels of EPO in critical patients with COVID-19 at "Hospital Agramont" in the city of El Alto (4150 masl) in Bolivia. A total of 16 patients, 15 men, one woman, with a mean age of 55.8 ± 8.49 years, admitted to the Intensive Care Unit were studied. All patients were permanent residents of El Alto, with no travel history below 3000 masl for at least one year. Blood samples were collected upon admission to the ICU. Serum EPO concentration was assessed using an ELISA kit, and a standard technique determined hemoglobin concentration. Only half of the observed patients survived the disease. Remarkably, fatal cases showed 2.5 times lower serum EPO than survivors (2.78 ± 0.8643 mU/mL vs 7.06 ± 2.713 mU/mL; p = 0.0096), and 1.24 times lower hemoglobin levels (13.96 ± 2.56 g/dL vs 17.41 ± 1.61 g/dL; p = 0.0159). While the number of cases evaluated in this work is low, our findings strongly warrant further investigation of EPO levels in COVID-19 patients at high and low altitudes. Our results also support the hypothesis that exogenous EPO administration could help critically ill COVID-19 patients overcome the disease.


Asunto(s)
Altitud , COVID-19/sangre , Eritropoyetina/sangre , Pulmón/diagnóstico por imagen , Anciano , Bolivia , COVID-19/diagnóstico por imagen , COVID-19/mortalidad , Femenino , Hemoglobinas/metabolismo , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Pronóstico , Factores de Riesgo , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X
12.
Front Physiol ; 12: 647822, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776799

RESUMEN

Phylogeographic studies showed that house mice (Mus musculus) originated in the Himalayan region, while common rats (Rattus rattus and Rattus norvegicus) come from the lowlands of China and India. Accordingly, it has been proposed that its origins gave mice, but not rats, the ability to invade ecological niches at high altitudes (pre-adaptation). This proposal is strongly supported by the fact that house mice are distributed throughout the world, while common rats are practically absent above 2,500 m. Considering that the ability of mammals to colonize high-altitude environments (>2,500 m) is limited by their capability to tolerate reduced oxygen availability, in this work, we hypothesize that divergences in the ventilatory, hematological, and metabolic phenotypes of mice and rats establish during the process of acclimatization to hypoxia (Hx). To test this hypothesis male FVB mice and Sprague-Dawley (SD) rats were exposed to Hx (12% O2) for 0 h (normoxic controls), 6 h, 1, 7, and 21 days. We assessed changes in ventilatory [minute ventilation (VE), respiratory frequency (f R), and tidal volume (VT)], hematological (hematocrit and hemoglobin concentration), and metabolic [whole-body O2 consumption (VO2) and CO2 production (VCO2), and liver mitochondrial oxygen consumption rate (OCR) parameters]. Compared to rats, results in mice show increased ventilatory, metabolic, and mitochondrial response. In contrast, rats showed quicker and higher hematological response than mice and only minor ventilatory and metabolic adjustments. Our findings may explain, at least in part, why mice, but not rats, were able to colonize high-altitude habitats.

13.
PLoS One ; 16(3): e0237294, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33780470

RESUMEN

The coronavirus disease 2019 (COVID-19) outbreak in North, Central, and South America has become the epicenter of the current pandemic. We have suggested previously that the infection rate of this virus might be lower in people living at high altitude (over 2,500 m) compared to that in the lowlands. Based on data from official sources, we performed a new epidemiological analysis of the development of the pandemic in 23 countries on the American continent as of May 23, 2020. Our results confirm our previous finding, further showing that the incidence of COVID-19 on the American continent decreases significantly starting at 1,000 m above sea level (masl). Moreover, epidemiological modeling indicates that the virus transmission rate is lower in the highlands (>1,000 masl) than in the lowlands (<1,000 masl). Finally, evaluating the differences in the recovery percentage of patients, the death-to-case ratio, and the theoretical fraction of undiagnosed cases, we found that the severity of COVID-19 is also decreased above 1,000 m. We conclude that the impact of the COVID-19 decreases significantly with altitude.


Asunto(s)
Altitud , COVID-19/patología , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , América Central/epidemiología , Humanos , Incidencia , América del Norte/epidemiología , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad , América del Sur/epidemiología
15.
Front Physiol ; 12: 781662, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002764

RESUMEN

Excessive carotid body responsiveness to O2 and/or CO2/H+ stimuli contributes to respiratory instability and apneas during sleep. In hypogonadal men, testosterone supplementation may increase the risk of sleep-disordered breathing; however, the site of action is unknown. The present study tested the hypothesis that testosterone supplementation potentiates carotid body responsiveness to hypoxia in adult male rats. Because testosterone levels decline with age, we also determined whether these effects were age-dependent. In situ hybridization determined that androgen receptor mRNA was present in the carotid bodies and caudal nucleus of the solitary tract of adult (69 days old) and aging (193-206 days old) male rats. In urethane-anesthetized rats injected with testosterone propionate (2 mg/kg; i.p.), peak breathing frequency measured during hypoxia (FiO2 = 0.12) was 11% greater vs. the vehicle treatment group. Interestingly, response intensity following testosterone treatment was positively correlated with animal age. Exposing ex vivo carotid body preparations from young and aging rats to testosterone (5 nM, free testosterone) 90-120 min prior to testing showed that the carotid sinus nerve firing rate during hypoxia (5% CO2 + 95% N2; 15 min) was augmented in both age groups as compared to vehicle (<0.001% DMSO). Ventilatory measurements performed using whole body plethysmography revealed that testosterone supplementation (2 mg/kg; i.p.) 2 h prior reduced apnea frequency during sleep. We conclude that in healthy rats, age-dependent potentiation of the carotid body's response to hypoxia by acute testosterone supplementation does not favor the occurrence of apneas but rather appears to stabilize breathing during sleep.

16.
Front Physiol ; 12: 701344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34987412

RESUMEN

Injuries that occur early in life are often at the root of adult illness. Neonatal maternal separation (NMS) is a form of early life stress that has persistent and sex-specific effects on the development of neural networks, including those that regulate breathing. The release of stress hormones during a critical period of development contributes to the deleterious consequences of NMS, but the role of increased corticosterone (CORT) in NMS-induced respiratory disturbance is unknown. Because erythropoietin (EPO) is a potent neuroprotectant that prevents conditions associated with hyperactivation of the stress neuroaxis in a sex-specific manner, we hypothesized that EPO reduces the sex-specific alteration of respiratory regulation induced by NMS in adult mice. Animals were either raised under standard conditions (controls) or exposed to NMS 3 h/day from postnatal days 3-12. We tested the efficacy of EPO in preventing the effects of NMS by comparing wild-type mice with transgenic mice that overexpress EPO only in the brain (Tg21). In 7-days-old pups, NMS augmented CORT levels ~2.5-fold by comparison with controls but only in males; this response was reduced in Tg21 mice. Respiratory function was assessed using whole-body plethysmography. Apneas were detected during sleep; the responsiveness to stimuli was measured by exposing mice to hypoxia (10% O2; 15 min) and hypercapnia (5% CO2; 10 min). In wild-type, NMS increased the number of apneas and the hypercapnic ventilatory response (HcVR) only in males; with no effect on Tg21. In wild-type males, the incidence of apneas was positively correlated with HcVR and inversely related to the tachypneic response to hypoxia. We conclude that neural EPO reduces early life stress-induced respiratory disturbances observed in males.

17.
Rev Recent Clin Trials ; 15(4): 347-359, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32981508

RESUMEN

BACKGROUND: Critical hypoxia in this COVID-19 pandemic results in high mortality and economic loss worldwide. Initially, this disease' pathophysiology was poorly understood and interpreted as a SARS (Severe Acute Respiratory Syndrome) pneumonia. The severe atypical lung CAT scan images alerted all countries, including the poorest, to purchase lacking sophisticated ventilators. However, up to 88% of the patients on ventilators lost their lives. It was suggested that COVID-19 could be similar to a High-Altitude Pulmonary Edema (HAPE). New observations and pathological findings are gradually clarifying the disease. METHODS: As high-altitude medicine and hypoxia physiology specialists working and living in the highlands for over 50 years, we perform a perspective analysis of hypoxic diseases treated at high altitudes and compare them to Covid-19. Oxygen transport physiology, SARS-Cov-2 characteristics, and its transmission, lung imaging in COVID-19, and HAPE, as well as the causes of clinical signs and symptoms, are discussed. RESULTS: High-altitude oxygen transport physiology has been systematically ignored. COVID-19 signs and symptoms indicate a progressive and irreversible failure in the oxygen transport system, secondary to pneumolysis produced by SARS-Cov-2's alveolar-capillary membrane "attack". HAPE's pulmonary compromise is treatable and reversible. COVID-19 is associated with several diseases, with different individual outcomes, in different countries, and at different altitudes. CONCLUSIONS: The pathophysiology of High-altitude illnesses can help explain COVID-19 pathophysiology, severity, and management. Early diagnosis and use of EPO, acetylsalicylic-acid, and other anti-inflammatories, oxygen therapy, antitussives, antibiotics, and the use of Earth open-circuit- astronaut-resembling suits to return to daily activities, should all be considered. Ventilator use can be counterproductive. Immunity development is the only feasible long-term survival tool.


Asunto(s)
COVID-19/metabolismo , COVID-19/fisiopatología , Oxígeno/metabolismo , Mal de Altura/diagnóstico , Mal de Altura/metabolismo , Mal de Altura/fisiopatología , COVID-19/diagnóstico , COVID-19/terapia , Diagnóstico Diferencial , Humanos , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Ventiladores Mecánicos
18.
Respir Physiol Neurobiol ; 279: 103476, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32522574

RESUMEN

A very recent epidemiological study provides preliminary evidence that living in habitats located at 2500 m above sea level (masl) might protect from the development of severe respiratory symptoms following infection with the novel SARS-CoV-2 virus. This epidemiological finding raises the question of whether physiological mechanisms underlying the acclimatization to high altitude identifies therapeutic targets for the effective treatment of severe acute respiratory syndrome pivotal to the reduction of global mortality during the COVID-19 pandemic. This article compares the symptoms of acute mountain sickness (AMS) with those of SARS-CoV-2 infection and explores overlapping patho-physiological mechanisms of the respiratory system including impaired oxygen transport, pulmonary gas exchange and brainstem circuits controlling respiration. In this context, we also discuss the potential impact of SARS-CoV-2 infection on oxygen sensing in the carotid body. Finally, since erythropoietin (EPO) is an effective prophylactic treatment for AMS, this article reviews the potential benefits of implementing FDA-approved erythropoietin-based (EPO) drug therapies to counteract a variety of acute respiratory and non-respiratory (e.g. excessive inflammation of vascular beds) symptoms of SARS-CoV-2 infection.


Asunto(s)
Aclimatación/fisiología , Mal de Altura/fisiopatología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/fisiopatología , Eritropoyetina/farmacología , Hipoxia/fisiopatología , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/fisiopatología , COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/metabolismo , Humanos , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/metabolismo
19.
Respir Physiol Neurobiol ; 277: 103443, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32333993

RESUMEN

In the present study we analyze the epidemiological data of COVID-19 of Tibet and high-altitude regions of Bolivia and Ecuador, and compare to lowland data, to test the hypothesis that high-altitude inhabitants (+2,500 m above sea-level) are less susceptible to develop severe adverse effects in acute SARS-CoV-2 virus infection. Analysis of available epidemiological data suggest that physiological acclimatization/adaptation that counterbalance the hypoxic environment in high-altitude may protect from severe impact of acute SARS-CoV-2 virus infection. Potential underlying mechanisms such as: (i) a compromised half-live of the virus caused by the high-altitude environment, and (ii) a hypoxia mediated down regulation of angiotensin-converting enzyme 2 (ACE2), which is the main binding target of SARS-CoV-2 virus in the pulmonary epithelium are discussed.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Neumonía Viral/epidemiología , Neumonía Viral/virología , Altitud , Betacoronavirus/patogenicidad , Bolivia/epidemiología , COVID-19 , Susceptibilidad a Enfermedades , Ecuador/epidemiología , Humanos , Oxígeno , Pandemias , SARS-CoV-2 , Tibet/epidemiología , Virulencia
20.
Am J Respir Cell Mol Biol ; 62(1): 35-42, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31247144

RESUMEN

Thickening of the airway smooth muscle is central to bronchial hyperreactivity. We have shown that the sphingosine analog (R)-2-amino-4-(4-heptyloxyphenyl)-2-methylbutanol (AAL-R) can reverse preestablished airway hyperreactivity in a chronic asthma model. Because sphingosine analogs can be metabolized by SPHK2 (sphingosine kinase 2), we investigated whether this enzyme was required for AAL-R to perturb mechanisms sustaining airway smooth muscle cell proliferation. We found that AAL-R pretreatment reduced the capacity of live airway smooth muscle cells to use oxygen for oxidative phosphorylation and increased lactate dehydrogenase activity. We also determined that SPHK2 was upregulated in airway smooth muscle cells bearing the proliferation marker Ki67 relative to their Ki67-negative counterpart. Comparing different stromal cell subsets of the lung, we found that high SPHK2 concentrations were associated with the ability of AAL-R to inhibit metabolic activity assessed by conversion of the tetrazolium dye MTT. Knockdown or pharmacological inhibition of SPHK2 reversed the effect of AAL-R on MTT conversion, indicating the essential role for this kinase in the metabolic perturbations induced by sphingosine analogs. Our results support the hypothesis that increased SPHK2 levels in proliferating airway smooth muscle cells could be exploited to counteract airway smooth muscle thickening with synthetic substrates.


Asunto(s)
Asma/metabolismo , Pulmón/metabolismo , Miocitos del Músculo Liso/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Hiperreactividad Bronquial/metabolismo , Línea Celular , Proliferación Celular/fisiología , Humanos , Músculo Liso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...