Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Life (Basel) ; 14(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38541649

RESUMEN

Sucralose is a food additive initially used to mitigate glycemic peaks and calorie intake in patients with diabetes and obesity. Although sucralose has been considered safe for human consumption, the World Health Organization (WHO) issued a global alert in 2023 concerning the potential health implications of this artificial sweetener. This review aims to comprehensively explore the effects of sucralose intake on human health by understanding sucralose absorption, metabolism, and excretion. We also outline the role of the sweet taste 1 receptor 3 (T1R3) in mediating sucralose-dependent signaling pathways that regulate satiety, incretin release, and insulin response. Finally, we discuss the impact of sucralose on microbiome dysbiosis, inflammatory response origin, liver damage, and toxicity. Gaining a deeper understanding of the manifold effects of sucralose on human physiology will help promote further studies to ensure its consumption is deemed safe for a broader population, including children, adolescents, and pregnant women.

2.
Trop Med Infect Dis ; 8(6)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37368708

RESUMEN

Neuroinflammation is critical in developing and progressing neurological diseases. The underlying pro-inflammatory cytokine expression combined with additional mechanisms in the neuropathology, such as oxidative stress, brain-blood barrier damage, and endothelial dysfunction, could contribute to the susceptibility to developing severe COVID-19. The physiopathology of SARS-CoV-2 and other human coronaviruses (H-CoVs) has not been completely understood; however, they have all been linked to a disproportionated response of the immune system, particularly an exacerbated cytokine production and the dysregulation of total cell counts. In this article, based on the compilation of studies reported by our working group regarding COVID-19 and neurological diseases, we propose that the inflammation observed in the central nervous system, through a CSF analysis, could be conditioned by neurological disease(s) and enhanced by COVID-19. Therefore, it is necessary to determine the cytokine profile in different neurological disorders to propose adequate treatments and avoid severe forms of the disease in these patients.

4.
Front Cell Neurosci ; 16: 977039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187294

RESUMEN

SARS-CoV-2 causes COVID-19, which has claimed millions of lives. This virus can infect various cells and tissues, including the brain, for which numerous neurological symptoms have been reported, ranging from mild and non-life-threatening (e.g., headaches, anosmia, dysgeusia, and disorientation) to severe and life-threatening symptoms (e.g., meningitis, ischemic stroke, and cerebral thrombosis). The cellular receptor for SARS-CoV-2 is angiotensin-converting enzyme 2 (ACE2), an enzyme that belongs to the renin-angiotensin system (RAS). RAS is an endocrine system that has been classically associated with regulating blood pressure and fluid and electrolyte balance; however, it is also involved in promoting inflammation, proliferation, fibrogenesis, and lipogenesis. Two pathways constitute the RAS with counter-balancing effects, which is the key to its regulation. The first axis (classical) is composed of angiotensin-converting enzyme (ACE), angiotensin (Ang) II, and angiotensin type 1 receptor (AT1R) as the main effector, which -when activated- increases the production of aldosterone and antidiuretic hormone, sympathetic nervous system tone, blood pressure, vasoconstriction, fibrosis, inflammation, and reactive oxygen species (ROS) production. Both systemic and local classical RAS' within the brain are associated with cognitive impairment, cell death, and inflammation. The second axis (non-classical or alternative) includes ACE2, which converts Ang II to Ang-(1-7), a peptide molecule that activates Mas receptor (MasR) in charge of opposing Ang II/AT1R actions. Thus, the alternative RAS axis enhances cognition, synaptic remodeling, cell survival, cell signal transmission, and antioxidant/anti-inflammatory mechanisms in the brain. In a physiological state, both RAS axes remain balanced. However, some factors can dysregulate systemic and local RAS arms. The binding of SARS-CoV-2 to ACE2 causes the internalization and degradation of this enzyme, reducing its activity, and disrupting the balance of systemic and local RAS, which partially explain the appearance of some of the neurological symptoms associated with COVID-19. Therefore, this review aims to analyze the role of RAS in the development of the neurological effects due to SARS-CoV-2 infection. Moreover, we will discuss the RAS-molecular targets that could be used for therapeutic purposes to treat the short and long-term neurological COVID-19-related sequelae.

5.
Front Immunol ; 13: 897995, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860236

RESUMEN

The contribution of the cellular immune response to the severity of coronavirus disease 2019 (COVID-19) is still uncertain because most evidence comes from patients receiving multiple drugs able to change immune function. Herein, we conducted a prospective cohort study and obtained blood samples from 128 unvaccinated healthy volunteers to examine the in vitro response pattern of CD4+ and CD8+ T cells and monocyte subsets to polyclonal stimuli, including anti-CD3, anti-CD28, poly I:C, severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) recombinant spike S1 protein, and lipopolysaccharide. Then, we started a six-month follow-up and registered 12 participants who got SARS-CoV-2 infection, from whom we retrospectively analyzed the basal immune response pattern of T cells and monocytes. Of the 12 participants infected, six participants developed mild COVID-19 with self-limiting symptoms such as fever, headache, and anosmia. Conversely, six other participants developed severe COVID-19 with pneumonia, respiratory distress, and hypoxia. Two severe COVID-19 cases required invasive mechanical ventilation. There were no differences between mild and severe cases for demographic, clinical, and biochemical baseline characteristics. In response to polyclonal stimuli, basal production of interleukin-2 (IL-2) and interferon (IFN-) gamma significantly decreased, and the programmed cell death protein 1 (PD-1) increased in CD4+ and CD8+ T cells from participants who posteriorly developed severe COVID-19 compared to mild cases. Likewise, CD14++CD16- classical and CD14+CD16+ non-classical monocytes lost their ability to produce IFN-alpha in response to polyclonal stimuli in participants who developed severe COVID-19 compared to mild cases. Of note, neither the total immunoglobulin G serum titers against the virus nor their neutralizing ability differed between mild and severe cases after a month of clinical recovery. In conclusion, using in vitro polyclonal stimuli, we found a basal immune response pattern associated with a predisposition to developing severe COVID-19, where high PD-1 expression and low IL-2 and IFN-gamma production in CD4+ and CD8+ T cells, and poor IFN-alpha expression in classical and non-classical monocytes are linked to disease worsening. Since antibody titers did not differ between mild and severe cases, these findings suggest cellular immunity may play a more crucial role than humoral immunity in preventing COVID-19 progression.


Asunto(s)
COVID-19 , Humanos , Inmunidad Celular , Interleucina-2 , Monocitos , Receptor de Muerte Celular Programada 1 , Estudios Prospectivos , Estudios Retrospectivos , SARS-CoV-2 , Linfocitos T
6.
Microorganisms ; 9(10)2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34683480

RESUMEN

Laboratory parameters display limited accuracy in predicting mortality in coronavirus disease 2019 (COVID-19) patients, as with serum albumin. Emerging evidence suggests that cytokine serum values may enhance the predictive capacity of albumin, especially interleukin (IL)-15. We thus investigated whether the use of the IL-15-to-albumin ratio enables improving mortality prediction at hospital admission in a large group of COVID-19 patients. In this prospective cross-sectional study, we enrolled and followed up three hundred and seventy-eight patients with a COVID-19 diagnosis until hospital discharge or death. Two hundred and fifty-five patients survived, whereas one hundred and twenty-three died. Student's T-test revealed that non-survivors had a significant two-fold increase in the IL-15-to-albumin ratio compared to survivors (167.3 ± 63.8 versus 74.2 ± 28.5), a difference that was more evident than that found for IL-15 or albumin separately. Likewise, mortality prediction considerably improved when using the IL-15-to-albumin ratio with a cut-off point > 105.4, exhibiting an area under the receiver operating characteristic curve of 0.841 (95% Confidence Interval, 0.725-0.922, p < 0.001). As we outlined here, this is the first study showing that combining IL-15 serum values with albumin improves mortality prediction in COVID-19 patients.

7.
World J Clin Oncol ; 12(8): 646-655, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34513598

RESUMEN

TRIM25 is emerging as a central factor in breast cancer due to its regulation and function. In particular, it has been shown that: (1) Estrogens modulate TRIM25 gene expression; (2) TRIM25 has activity as an E3-ligase enzyme for ubiquitin; and (3) TRIM25 is also an E3 ligase for interferon-stimulated gene 15 protein in the ISGylation system. Consequently, the proteome of mammary tissue is affected by TRIM25-associated pathways, involved in tumor development and metastasis. Here, we discuss the findings on the mechanisms involved in regulating TRIM25 expression and its functional relevance in breast cancer progression. These studies suggest that TRIM25 may be a biomarker and a therapeutic target for breast cancer.

8.
Exp Neurobiol ; 30(3): 256-261, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34230225

RESUMEN

The coronavirus family has tropism for the Central Nervous System (CNS), however, there is no solid evidence demonstrating that the neurological effects of COVID-19 result from direct viral infection or systemic inflammation. The goals of this study were to examine the cytokine profile and the presence of SARS-CoV-2 messenger ribonucleic acid (mRNA) in cerebrospinal fluids (CSF) from two patients with cerebrovascular disease and COVID-19. Although the SARS-CoV-2 mRNA was not detected in CSF of both patients, we found abnormally high levels of numerous proinflammatory cytokines and chemokines, especially IL-8 and MCP-1. Since these chemokines mediate activation and recruitment of neutrophils, monocytes, and macrophages, it is feasible that cerebrovascular disease related-neuroinflammation found in both patients results from an exacerbated inflammatory response instead of SARS-CoV-2 direct invasion to CNS. These results suggest that neuroinflammation plays a key role in cerebrovascular disease and COVID-19.

9.
Front Biosci (Landmark Ed) ; 26(2): 363-400, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33049674

RESUMEN

Bisphenol A (BPA), a compound used in the manufacturing of plastics and epoxy resins, is an endocrine disruptor with significant adverse impact on the human's health. Here, we review the animal models and clinical studies as well as the molecular and cellular mechanisms that show that BPA alters the normal function of the reproductive system, metabolism, brain function and behavior and contributes to the development of certain neurodevelopmental disorders including autism spectrum and attention-deficit and hyperactivity disorders. BPA also causes aberrant cognitive function, behavioral disturbances, and neurodegenerative diseases, including Parkinson's disease, amyotrophic lateral sclerosis (ALS), and multiple sclerosis. It has recently been proposed that exposure to BPA may be associated with the development of certain neurodegenerative diseases and neurodevelopmental disorders; however, it is a line of research that is just emerging. This work aims to review the available information about the association between exposure to BPA and cognitive function, behavioral disturbances, neurodegenerative diseases (Parkinson�s Disease, Amyotrophic lateral sclerosis, Multiple Sclerosis), and neurodevelopmental disorders (Autism Spectrum and Attention-Deficit/Hyperactivity Disorders). Likewise, the molecular and cellular mechanisms that may be involved with these pathological conditions will be analyzed.


Asunto(s)
Compuestos de Bencidrilo/efectos adversos , Disruptores Endocrinos/efectos adversos , Trastornos del Neurodesarrollo/inducido químicamente , Fenoles/efectos adversos , Animales , Humanos
10.
Birth Defects Res ; 112(17): 1326-1340, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32770630

RESUMEN

As a result of human socio-economic activity, industrial wastes have increased alarmingly. Plastic pollution is globally distributed across the world due to its properties of buoyancy and durability. Two broad classes of plastic-related chemicals are of critical concern for human health-bisphenol-A or BPA, and additives used in the synthesis of plastics, which are known as phthalates. Our exposure to them is ubiquitous because they are used in the production of materials that we use daily such as polycarbonate plastics, epoxy resins, flooring, automotive parts, medical devices, dental sealants, and children's toys. Since these compounds are not covalently bound to the products, they easily leach from them, leading to high human exposure. Both, BPA and phthalates, are endocrine-disruptor compounds (EDCs) with steroidogenic activity, and can bind to different receptors, such as estrogen, androgen, PPAR-γ, and AhR. These pathways are part of the complex regulatory neuroendocrine network, since its cellular components not only express neuroendocrine receptors, but synthesize and respond to several hormones and other endocrine ligands. On the other hand, the effects of BPA and phthalates on neuroendocrine diseases have been poorly studied and the available data are inconclusive. This can be attributed to the enormous variety of animal models and the different doses used in experiments or levels found in humans. However, what is clear is that exposure to both EDCs during critical life stages induces many changes in the neuroendocrine system of exposed humans that are correlated with different reproductive and neurological diseases.


Asunto(s)
Disruptores Endocrinos , Plásticos , Animales , Disruptores Endocrinos/toxicidad , Humanos , Microplásticos , Sistemas Neurosecretores/química , Plásticos/toxicidad , Reproducción
11.
Environ Res ; 185: 109465, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32305664

RESUMEN

Air pollution is the second most important risk factor associated with noncommunicable diseases after smoking. The effects of pollution on health are commonly attributable to particulate matter (PM), a complex mixture of particles suspended in the air. PM can penetrate the lower respiratory tract and has harmful direct and indirect effects on different organs and tissues. Direct effects are caused by the ability of PM components to cross the respiratory membrane and enter the bloodstream; indirect effects are systemic consequences of the local airway response. Recent work suggests that PM is an independent risk factor for low bone mineral density and osteoporosis-related fractures. Osteoporosis is a common age-related disease closely linked to bone fractures, with severe clinical consequences affecting quality of life, morbidity, and mortality. In this review, we discuss potential mechanisms behind the association between outdoor air pollution, especially PM, and bone damage. The discussion features four main mechanisms: 1) several different atmospheric pollutants can induce low-grade systemic inflammation, which affects bone metabolism through a specific effect of cytokines such as TNFα, IL-1ß, IL-6, and IL-17 on osteoblast and osteoclast differentiation and function; 2) some pollutants, particularly certain gas and metal compounds, can cause oxidative damage in the airway and bone cells; 3) different groups of pollutants can act as endocrine disruptors when binding to the receptors in bone cells, changing their functioning; and 4) air pollution can directly and indirectly cause vitamin D deficiency. Characterizing these mechanisms will better define the physiopathology of bone damage, and recognizing air pollution as a modifiable risk factor for osteoporosis will inform environmental policies. Such knowledge will also guide the prevention of fractures due to fragility and help reduce health-related costs.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/análisis , Material Particulado/toxicidad , Calidad de Vida , Fumar
12.
Rev. neurol. (Ed. impr.) ; 70(2): 53-66, 16 ene., 2020. tab, ilus
Artículo en Inglés | IBECS | ID: ibc-187248

RESUMEN

En la actualidad, la obesidad y el síndrome metabólico son enfermedades que representan un grave problema global de salud pública. A consecuencia de ello, en las últimas décadas ha aumentado el interés por estudiar los efectos de estas patologías sobre el funcionamiento del sistema nervioso central. Uno de los aspectos más ignorados en la bibliografía ha sido el impacto que tienen sobre los sistemas sensoriales, entre los que se encuentra el olfato. El sistema olfativo se relaciona con distintas funciones vitales, como activar mecanismos de defensa, contribuir a la inducción de reflejos apetitivos y digestivos, y reconocer individuos de su misma especie, e incluso tiene implicaciones sociosexuales. Se sabe que, además, desempeña un papel importante en la ingesta de alimentos, en la decisión de lo que se va a consumir, en los mecanismos de apetito y saciedad y, por ende, está involucrado en el desarrollo de obesidad. Estudios clínicos han demostrado que pacientes con obesidad presentan hiposmia con mayor frecuencia en comparación con sujetos delgados de la misma edad. También se han encontrado alteraciones en el olfato de roedores que presentan obesidad o rasgos similares a los del síndrome metabólico del humano. Las causas por las cuales existe esta asociación apenas están comenzando a investigarse; en este trabajo se revisan los estudios que han intentado entenderla desde un enfoque clínico y preclínico, así como los mecanismos biológicos que hasta el momento se han explorado en la bibliografía


Nowadays, it is well accepted that obesity and metabolic syndrome are diseases that constitute a global public health issue. In consequence, the interest in the study of the effects these pathologies produce in the central nervous system has greatly increased in the last decades. One of the most overlooked topics in the literature is the impact they exert in sensory systems, among which is olfaction. The olfactory system is related to a number of vital functions, like the activation of defense mechanisms, contribution to appetitive and digestive reflexes, recognition of conspecifics, and even has socio-sexual implications. It has been discovered that the olfactory system also plays a crucial role in food intake, the choice of foods, appetite and satiety mechanisms; therefore, it is involved in obesity development. Clinical studies have proven that obese patients exhibit hyposmia more frequently than aged-matched healthy controls. Olfactory alterations have also been found in obese rodents or in animals with similar features of human metabolic syndrome. The causes of this association are still being investigated. This work reviews the studies that have tried to understand this association from a preclinical and clinical approach as well as those biological mechanisms that could be involved. The evidences here presented suggest that obesity and metabolic syndrome affect the adequate function of olfactory sensory system


Asunto(s)
Humanos , Animales , Ratas , Obesidad/epidemiología , Síndrome Metabólico/complicaciones , Percepción Olfatoria , Trastornos del Olfato/complicaciones , Síndrome Metabólico/etiología
13.
PLoS One ; 14(7): e0218198, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31291264

RESUMEN

Bisphenol A (BPA) is an endocrine disruptor compound with estrogenic activity, possessing affinity for both nuclear (ERα and ERß) and membrane estrogen receptors. The main source of BPA exposure comes from the contamination of food and water by plastic storage containers or disposable bottles, among others, in which case BPA is easily ingested. Exposure to BPA during early pregnancy leads to lifelong effects; however, its effect on the immune system has not been fully studied. Since endocrine and immune systems interact in a bidirectional manner, the disruption of the former may cause permanent alterations of the latter, thus affecting a future anti-parasitic response. In this study, neonate BALB/c mice were exposed to a single dose of BPA (250 µg/kg); once sexual maturity was reached, they were orally infected with Trichinella spiralis (T. spiralis). The analyses performed after 5 days of infection revealed a decreased parasitic load in the duodenum of mice in the BPA-treated group. Flow cytometry analyses also revealed changes in the immune cell subpopulations of the infected animals when compared to the BPA-treated group. RT-PCR analyses of duodenum samples showed an increased expression of TNF-α, IFN-γ, IL-4, IL-5, and IL-9 in the BPA-treated group. These findings show a new aspect whereby early-life exposure to BPA contributes to the protection against T. spiralis by modulating the anti-parasitic immune response.


Asunto(s)
Compuestos de Bencidrilo/inmunología , Disruptores Endocrinos/inmunología , Fenoles/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Trichinella spiralis/inmunología , Triquinelosis/inmunología , Animales , Femenino , Inmunidad/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Embarazo , Factores Protectores , Triquinelosis/prevención & control
14.
J Interferon Cytokine Res ; 39(1): 39-55, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30321090

RESUMEN

In breast cancer, an uncontrolled cell proliferation leads to tumor formation and development of a multifactorial disease. Metastasis is a complex process that involves tumor spread to distant parts of the body from its original site. Metastatic dissemination represents the main physiopathology of cancer. Inter- and intracellular communication in all systems in vertebrates is mediated by cytokines, which are highly inducible, secretory proteins, produced not only by immune system cells, but also by endocrine and nervous system cells. It has become clear in recent years that cytokines, as well as their receptors are produced in the organisms under physiological and pathological conditions; recently, they have been closely related to breast cancer metastasis. The exact initiation process of breast cancer metastasis is unknown, although several hypotheses have emerged. In this study, we thoroughly reviewed the role of several cytokines in breast cancer metastasis. Data reviewed suggest that cytokines and growth factors are key players in the breast cancer metastasis induction. This knowledge must be considered with the aim to development of new therapeutic approaches to counter breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Citocinas/inmunología , Metástasis de la Neoplasia , Animales , Progresión de la Enfermedad , Humanos
15.
Front Cell Neurosci ; 12: 114, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755324

RESUMEN

In a state of oxidative stress, there is an increase of reactive species, which induce an altered intracellular signaling, leading to dysregulation of the inflammatory response. The inability of the antioxidant defense systems to modulate the proinflammatory response is key to the onset and progression of neurodegenerative diseases. The aim of this work is to review the effect of the state of oxidative stress on the loss of regulation of the inflammatory response on the microglia and astrocytes, the induction of different CD4+T cell populations in neuroinflammation, as well as its role in some neurodegenerative diseases. For this purpose, an intentional search of original articles, short communications, and reviews, was carried out in the following databases: PubMed, Scopus, and Google Scholar. The articles reviewed included the period from 1997 to 2017. With the evidence obtained, we conclude that the loss of redox balance induces alterations in the differentiation and number of CD4+T cell subpopulations, leading to an increase in Th1 and Th17 response. This contributes to the development of neuroinflammation as well as loss of the regulation of the inflammatory response in neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), and Multiple Sclerosis (MS). In contrast, regulatory T cells (Tregs) and Th2 modulate the inflammatory response of effect of T cells, microglia, and astrocytes. In this respect, it has been found that the mobilization of T cells with anti-inflammatory characteristics toward damaged regions of the CNS can provide neuroprotection and become a therapeutic strategy to control inflammatory processes in neurodegeneration.

16.
J Matern Fetal Neonatal Med ; 29(10): 1642-5, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26135758

RESUMEN

INTRODUCTION: Preeclampsia is one of the major causes of maternal and neonatal mortality. During pregnancy, the immune system must maintain the tolerance to the fetus, thus changes in the cytokine balance may result in a disturbed pregnancy. T helper cells play an important role in modulation of the immune system and are involved in this cytokine balance. OBJECTIVE: Many studies have been performed to study the T cell composition in different compartments during pregnancy, although this is the first study in which T cells are evaluated in umbilical cord blood. STUDY DESIGN: Intracellular expression of INF-gamma, IL-17, IL-4 and forkhead foxP3 in CD4+ T cells was evaluated in umbilical blood from healthy pregnant and preeclamptic women using a flow cytometer. RESULTS: Th2 and Treg cells levels were significantly diminished in preeclamptic compared to the healthy women, but no difference in Th1 and Th17 levels were found between both groups. CONCLUSIONS: Our data suggest that the cytokine balance is broken, encouraging the development of an exacerbated inflammatory response. Our results show that there is a shift, in the Th1/Th2, and the Th17/Treg balance, favoring skewness towards a proinflammatory status in the umbilical cord blood in preeclampsia.


Asunto(s)
Sangre Fetal/inmunología , Preeclampsia/inmunología , Linfocitos T Colaboradores-Inductores , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Embarazo , Adulto Joven
17.
Clin Immunol ; 161(2): 150-5, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26220216

RESUMEN

Smoking and exposure to biomass smoke induce the release of pro-inflammatory mediators and the activation of T helper cells. The resulting inflammatory response contributes to the development of COPD. Clinical heterogeneity exists among COPD patients, particularly between patients with disease associated with tobacco smoking (TS-COPD) and those exposed to biomass smoke (BE-COPD). The aim of this study was to identify whether exposure to tobacco and biomass smokes promotes different Th responses that contribute to clinical variability. The study only included women. The frequency of Th17 cells in patients with TS-COPD was significantly higher than in patients with BE-COPD and healthy controls (HC). In contrast, patients with BE-COPD had higher levels of Th2 cells than TS-COPD and HC. In accordance, IL-4 serum concentration was higher in BE-COPD than in TS-COPD. Our data indicates that the different responses induced by these two irritants may underlie the clinical heterogeneity between TS- and BE-COPD patients.


Asunto(s)
Interleucina-4/inmunología , Nicotiana/inmunología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Humo/efectos adversos , Fumar/inmunología , Células Th2/inmunología , Anciano , Biomasa , Femenino , Humanos , Células Th17/inmunología , Nicotiana/efectos adversos
18.
Arch Cardiol Mex ; 83(1): 45-54, 2013.
Artículo en Español | MEDLINE | ID: mdl-23474149

RESUMEN

Exposition to tobacco smoke has been established as the main risk factor to develop chronic obstructive pulmonary disease (COPD), by inducing inflammation of the airways. Several cell populations participate in this inflammatory process. It has been accepted that a maladaptive modulation of inflammatory responses plays a critical role in the development of the disease. Regulatory T cells (Treg) are a subset of T CD4(+) lymphocytes that modulate the immune response through secretion of cytokines. The role of the Treg cells in chronic obstructive pulmonary disease is not clearly known, that is why it is important to focus in understanding their participation in the pathogenesis of the disease. To elaborate a systematic review of original articles in which we could describe Treg cells (their ontogeny, mechanisms of action) and their role in COPD, we made a systematic literature search in some data bases (MEDLINE, AMED, PubMed and Scielo) looking through the next keywords: "COPD and Regulatory T cells/EPOC y células T reguladoras", «Inflammation and COPD/Inflamación y EPOC¼, «Regulatory T cells/Células T reguladoras¼. We included basic science articles, controlled and non-controlled clinical trials, meta-analysis and guides. From this search we conclude that Treg cells are a subpopulation of T CD4(+) lymphocytes and their major functions are the suppression of immune responses and the maintenance of tolerance to self-antigens. A disruption in the regulatory mechanisms of the Treg cells leads to the development and perpetuation of inflammation in COPD.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica/inmunología , Linfocitos T Reguladores/fisiología , Humanos
19.
Arch. cardiol. Méx ; 83(1): 45-54, ene.-mar. 2013. ilus, tab
Artículo en Español | LILACS | ID: lil-685353

RESUMEN

La exposición al humo del tabaco induce inflamación de las vías aéreas y es el principal factor de riesgo para desarrollar la enfermedad pulmonar obstructiva crónica (EPOC). En este proceso inflamatorio participan varias poblaciones celulares. Algunas fallas en la modulación de la respuesta inflamatoria han sido aceptadas como un factor para el desarrollo de esta enfermedad. Las células T reguladoras (Treg) son un tipo de linfocitos T CD4+ que modulan la respuesta inmune mediante contacto directo con las células efectoras, así como por la secreción de citocinas inmunorreguladoras. El papel de las células Treg en la EPOC no se encuentra completamente comprendido, por lo cual es importante evaluar su participación en la inmunopatogénesis de la enfermedad. Con el objetivo de elaborar una revisión sistemática de artículos originales que nos permitiera describir las células Treg (su origen, características y mecanismos de acción) y su participación en la EPOC, realizamos una búsqueda intencionada en las siguientes bases electrónicas: MEDLINE, AMED, PubMed y Scielo; para ello usamos la combinación de las siguientes palabras clave: <

Exposition to tobacco smoke has been established as the main risk factor to develop chronic obstructive pulmonary disease (COPD), by inducing inflammation of the airways. Several cell populations participate in this inflammatory process. It has been accepted that a maladaptive modulation of inflammatory responses plays a critical role in the development of the disease. Regulatory T cells (Treg) are a subset of T CD4+ lymphocytes that modulate the immune response through secretion of cytokines. The role of the Treg cells in chronic obstructive pulmonary disease is not clearly known, that is why it is important to focus in understanding their participation in the pathogenesis of the disease. To elaborate a systematic review of original articles in which we could describe Treg cells (their ontogeny, mechanisms of action) and their role in COPD, we made a systematic literature search in some data bases (MEDLINE, AMED, PubMed and Scielo) looking through the next keywords: ''COPD and Regulatory T cells/EPOC y células T reguladoras'', <

Asunto(s)
Humanos , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Linfocitos T Reguladores/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...