Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(16): e2320623121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38607930

RESUMEN

Fine root lifespan is a critical trait associated with contrasting root strategies of resource acquisition and protection. Yet, its position within the multidimensional "root economics space" synthesizing global root economics strategies is largely uncertain, and it is rarely represented in frameworks integrating plant trait variations. Here, we compiled the most comprehensive dataset of absorptive median root lifespan (MRL) data including 98 observations from 79 woody species using (mini-)rhizotrons across 40 sites and linked MRL to other plant traits to address questions of the regulators of MRL at large spatial scales. We demonstrate that MRL not only decreases with plant investment in root nitrogen (associated with more metabolically active tissues) but also increases with construction of larger diameter roots which is often associated with greater plant reliance on mycorrhizal symbionts. Although theories linking organ structure and function suggest that root traits should play a role in modulating MRL, we found no correlation between root traits associated with structural defense (root tissue density and specific root length) and MRL. Moreover, fine root and leaf lifespan were globally unrelated, except among evergreen species, suggesting contrasting evolutionary selection between leaves and roots facing contrasting environmental influences above vs. belowground. At large geographic scales, MRL was typically longer at sites with lower mean annual temperature and higher mean annual precipitation. Overall, this synthesis uncovered several key ecophysiological covariates and environmental drivers of MRL, highlighting broad avenues for accurate parametrization of global biogeochemical models and the understanding of ecosystem response to global climate change.


Asunto(s)
Ecosistema , Longevidad , Evolución Biológica , Cambio Climático , Cabeza
2.
Nat Commun ; 15(1): 1251, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341437

RESUMEN

Organismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for >2800 above- and belowground taxa from 14 trophic guilds spanning a disturbance and resource availability gradient in German grasslands. The results indicate that most guilds consistently respond to these drivers through both direct and trophically mediated effects, resulting in a 'slow-fast' axis at the level of the entire community. Using 15 indicators of carbon and nutrient fluxes, biomass production and decomposition, we also show that fast trait communities are associated with faster rates of ecosystem functioning. These findings demonstrate that 'slow' and 'fast' strategies can be manifested at the level of whole communities, opening new avenues of ecosystem-level functional classification.


Asunto(s)
Biodiversidad , Ecosistema , Biomasa , Agricultura , Suelo
3.
Environ Microbiol Rep ; 16(1): e13211, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37991154

RESUMEN

Reductions in soil moisture due to prolonged episodes of drought can potentially affect whole forest ecosystems, including soil microorganisms and their functions. We investigated how the composition of soil microbial communities is affected by prolonged episodes of water limitation. In a mesocosm experiment with Scots pine saplings and natural forest soil maintained at different levels of soil water content over 2 years, we assessed shifts in prokaryotic and fungal communities and related these to changes in plant development and soil properties. Prolonged water limitation induced progressive changes in soil microbial community composition. The dissimilarity between prokaryotic communities at different levels of water limitation increased over time regardless of the recurrent seasons, while fungal communities were less affected by prolonged water limitation. Under low soil water contents, desiccation-tolerant groups outcompeted less adapted, and the lifestyle of prokaryotic taxa shifted from copiotrophic to oligotrophic. While the abundance of saprotrophic and ligninolytic groups increased alongside an accumulation of dead plant material, the abundance of symbiotic and nutrient-cycling taxa decreased, likely impairing the development of the trees. Overall, prolonged episodes of drought appeared to continuously alter the structure of microbial communities, pointing to a potential loss of critical functions provided by the soil microbiome.


Asunto(s)
Microbiota , Suelo , Suelo/química , Microbiología del Suelo , Bosques , Árboles
4.
Plant Soil ; 490(1-2): 499-519, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780069

RESUMEN

Background and aims: Tree species worldwide suffer from extended periods of water limitation. These conditions not only affect the growth and vitality of trees but also feed back on the cycling of carbon (C) at the plant-soil interface. However, the impact of progressing water loss from soils on the transfer of assimilated C belowground remains unresolved. Methods: Using mesocosms, we assessed how increasing levels of water deficit affect the growth of Pinus sylvestris saplings and performed a 13C-CO2 pulse labelling experiment to trace the pathway of assimilated C into needles, fine roots, soil pore CO2, and phospholipid fatty acids of soil microbial groups. Results: With increasing water limitation, trees partitioned more biomass belowground at the expense of aboveground growth. Moderate levels of water limitation barely affected the uptake of 13C label and the transit time of C from needles to the soil pore CO2. Comparatively, more severe water limitation increased the fraction of 13C label that trees allocated to fine roots and soil fungi while a lower fraction of 13CO2 was readily respired from the soil. Conclusions: When soil water becomes largely unavailable, C cycling within trees becomes slower, and a fraction of C allocated belowground may accumulate in fine roots or be transferred to the soil and associated microorganisms without being metabolically used. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-023-06093-5.

5.
FEMS Microbiol Ecol ; 99(6)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37188639

RESUMEN

The soil microbiome is crucial for regulating biogeochemical processes and can, thus, strongly influence tree health, especially under stress conditions. However, little is known about the effect of prolonged water deficit on soil microbial communities during the development of saplings. We assessed the response of prokaryotic and fungal communities to different levels of experimental water limitation in mesocosms with Scots pine saplings. We combined analyses of physicochemical soil properties and tree growth with DNA metabarcoding of soil microbial communities throughout four seasons. Seasonal changes in soil temperature and soil water content and a decreasing soil pH strongly influenced the composition of microbial communities but not their total abundance. Contrasting levels of soil water contents gradually altered the soil microbial community structure over the four seasons. Results indicated that prokaryotic communities were less resistant to water limitation than fungal communities. Water limitation promoted the proliferation of desiccation tolerant, oligotrophic taxa. Moreover, water limitation and an associated increase in soil C/N ratio induced a shift in the potential lifestyle of taxa from symbiotic to saprotrophic. Overall, water limitation appeared to alter soil microbial communities involved in nutrient cycling, pointing to potential consequences for forest health affected by prolonged episodes of drought.


Asunto(s)
Micobioma , Pinus sylvestris , Agua , Suelo , Bosques , Pinus sylvestris/fisiología , Microbiología del Suelo , Árboles , Bacterias/genética
6.
Front Microbiol ; 13: 715637, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185839

RESUMEN

Acidobacteria occur in a large variety of ecosystems worldwide and are particularly abundant and highly diverse in soils. In spite of their diversity, only few species have been characterized to date which makes Acidobacteria one of the most poorly understood phyla among the domain Bacteria. We used a culture-independent niche modeling approach to elucidate ecological adaptations and their evolution for 4,154 operational taxonomic units (OTUs) of Acidobacteria across 150 different, comprehensively characterized grassland soils in Germany. Using the relative abundances of their 16S rRNA gene transcripts, the responses of active OTUs along gradients of 41 environmental variables were modeled using hierarchical logistic regression (HOF), which allowed to determine values for optimum activity for each variable (niche optima). By linking 16S rRNA transcripts to the phylogeny of full 16S rRNA gene sequences, we could trace the evolution of the different ecological adaptations during the diversification of Acidobacteria. This approach revealed a pronounced ecological diversification even among acidobacterial sister clades. Although the evolution of habitat adaptation was mainly cladogenic, it was disrupted by recurrent events of convergent evolution that resulted in frequent habitat switching within individual clades. Our findings indicate that the high diversity of soil acidobacterial communities is largely sustained by differential habitat adaptation even at the level of closely related species. A comparison of niche optima of individual OTUs with the phenotypic properties of their cultivated representatives showed that our niche modeling approach (1) correctly predicts those physiological properties that have been determined for cultivated species of Acidobacteria but (2) also provides ample information on ecological adaptations that cannot be inferred from standard taxonomic descriptions of bacterial isolates. These novel information on specific adaptations of not-yet-cultivated Acidobacteria can therefore guide future cultivation trials and likely will increase their cultivation success.

7.
Glob Chang Biol ; 28(3): 883-898, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34689380

RESUMEN

Rising temperatures have the potential to directly affect carbon cycling in peatlands by enhancing organic matter (OM) decomposition, contributing to the release of CO2 and CH4 to the atmosphere. In turn, increasing atmospheric CO2 concentration may stimulate photosynthesis, potentially increasing plant litter inputs belowground and transferring carbon from the atmosphere into terrestrial ecosystems. Key questions remain about the magnitude and rate of these interacting and opposing environmental change drivers. Here, we assess the incorporation and degradation of plant- and microbe-derived OM in an ombrotrophic peatland after 4 years of whole-ecosystem warming (+0, +2.25, +4.5, +6.75 and +9°C) and two years of elevated CO2  manipulation (500 ppm above ambient). We show that OM molecular composition was substantially altered in the aerobic acrotelm, highlighting the sensitivity of acrotelm carbon to rising temperatures and atmospheric CO2 concentration. While warming accelerated OM decomposition under ambient CO2 , new carbon incorporation into peat increased in warming × elevated CO2 treatments for both plant- and microbe-derived OM. Using the isotopic signature of the applied CO2 enrichment as a label for recently photosynthesized OM, our data demonstrate that new plant inputs have been rapidly incorporated into peat carbon. Our results suggest that under current hydrological conditions, rising temperatures and atmospheric CO2  levels will likely offset each other in boreal peatlands.


Asunto(s)
Dióxido de Carbono , Ecosistema , Atmósfera , Ciclo del Carbono , Dióxido de Carbono/análisis , Suelo
8.
Proc Natl Acad Sci U S A ; 117(45): 28140-28149, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33093203

RESUMEN

Land-use intensification can increase provisioning ecosystem services, such as food and timber production, but it also drives changes in ecosystem functioning and biodiversity loss, which may ultimately compromise human wellbeing. To understand how changes in land-use intensity affect the relationships between biodiversity, ecosystem functions, and services, we built networks from correlations between the species richness of 16 trophic groups, 10 ecosystem functions, and 15 ecosystem services. We evaluated how the properties of these networks varied across land-use intensity gradients for 150 forests and 150 grasslands. Land-use intensity significantly affected network structure in both habitats. Changes in connectance were larger in forests, while changes in modularity and evenness were more evident in grasslands. Our results show that increasing land-use intensity leads to more homogeneous networks with less integration within modules in both habitats, driven by the belowground compartment in grasslands, while forest responses to land management were more complex. Land-use intensity strongly altered hub identity and module composition in both habitats, showing that the positive correlations of provisioning services with biodiversity and ecosystem functions found at low land-use intensity levels, decline at higher intensity levels. Our approach provides a comprehensive view of the relationships between multiple components of biodiversity, ecosystem functions, and ecosystem services and how they respond to land use. This can be used to identify overall changes in the ecosystem, to derive mechanistic hypotheses, and it can be readily applied to further global change drivers.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Modelos Biológicos , Bosques , Pradera
9.
Ecol Lett ; 22(1): 170-180, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30463104

RESUMEN

While forest management strongly influences biodiversity, it remains unclear how the structural and compositional changes caused by management affect different community dimensions (e.g. richness, specialisation, abundance or completeness) and how this differs between taxa. We assessed the effects of nine forest features (representing stand structure, heterogeneity and tree composition) on thirteen above- and belowground trophic groups of plants, animals, fungi and bacteria in 150 temperate forest plots differing in their management type. Canopy cover decreased light resources, which increased community specialisation but reduced overall diversity and abundance. Features increasing resource types and diversifying microhabitats (admixing of oaks and conifers) were important and mostly affected richness. Belowground groups responded differently to those aboveground and had weaker responses to most forest features. Our results show that we need to consider forest features rather than broad management types and highlight the importance of considering several groups and community dimensions to better inform conservation.


Asunto(s)
Biodiversidad , Árboles , Animales , Hongos
10.
Nat Commun ; 9(1): 4839, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30446752

RESUMEN

Trade-offs and synergies in the supply of forest ecosystem services are common but the drivers of these relationships are poorly understood. To guide management that seeks to promote multiple services, we investigated the relationships between 12 stand-level forest attributes, including structure, composition, heterogeneity and plant diversity, plus 4 environmental factors, and proxies for 14 ecosystem services in 150 temperate forest plots. Our results show that forest attributes are the best predictors of most ecosystem services and are also good predictors of several synergies and trade-offs between services. Environmental factors also play an important role, mostly in combination with forest attributes. Our study suggests that managing forests to increase structural heterogeneity, maintain large trees, and canopy gaps would promote the supply of multiple ecosystem services. These results highlight the potential for forest management to encourage multifunctional forests and suggest that a coordinated landscape-scale strategy could help to mitigate trade-offs in human-dominated landscapes.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos , Bosques , Árboles/fisiología , Ecosistema , Europa (Continente) , Agricultura Forestal/tendencias , Humanos
11.
Nat Commun ; 9(1): 3006, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30068916

RESUMEN

Fine roots support the water and nutrient demands of plants and supply carbon to soils. Quantifying turnover times of fine roots is crucial for modeling soil organic matter dynamics and constraining carbon cycle-climate feedbacks. Here we challenge widely used isotope-based estimates suggesting the turnover of fine roots of trees to be as slow as a decade. By recording annual growth rings of roots from woody plant species, we show that mean chronological ages of fine roots vary from <1 to 12 years in temperate, boreal and sub-arctic forests. Radiocarbon dating reveals the same roots to be constructed from 10 ± 1 year (mean ± 1 SE) older carbon. This dramatic difference provides evidence for a time lag between plant carbon assimilation and production of fine roots, most likely due to internal carbon storage. The high root turnover documented here implies greater carbon inputs into soils than previously thought which has wide-ranging implications for quantifying ecosystem carbon allocation.

12.
New Phytol ; 215(2): 766-778, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28543616

RESUMEN

Increased CO2 emissions and global warming may alter the composition of fungal communities through the removal of temperature limitation in the plant-soil system, faster nitrogen (N) cycling and changes in the carbon (C) allocation of host plants to the rhizosphere. At a Swiss treeline featuring Larix decidua and Pinus uncinata, the effects of multiple years of CO2 enrichment and experimental soil warming on the fungal community composition in the organic horizons were analysed using 454-pyrosequencing of ITS2 amplicons. Sporocarp production and colonization of ectomycorrhizal root tips were investigated in parallel. Fungal community composition was significantly altered by soil warming, whereas CO2 enrichment had little effect. Tree species influenced fungal community composition and the magnitude of the warming responses. The abundance of ectomycorrhizal fungal taxa was positively correlated with N availability, and ectomycorrhizal taxa specialized for conditions of high N availability proliferated with warming, corresponding to considerable increases in inorganic N in warmed soils. Traits related to N utilization are important in determining the responses of ectomycorrhizal fungi to warming in N-poor cold ecosystems. Shifts in the overall fungal community composition in response to higher temperatures may alter fungal-driven processes with potential feedbacks on ecosystem N cycling and C storage at the alpine treeline.


Asunto(s)
Hongos/fisiología , Microbiología del Suelo , Altitud , Disponibilidad Biológica , Dióxido de Carbono , Hongos/genética , Larix , Micorrizas/fisiología , Nitrógeno/farmacocinética , Pinus , Raíces de Plantas/microbiología , Suelo/química , Suiza , Temperatura
13.
PLoS One ; 12(3): e0173765, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28288199

RESUMEN

Interactions occur between two or more organisms affecting each other. Interactions are decisive for the ecology of the organisms. Without direct experimental evidence the analysis of interactions is difficult. Correlation analyses that are based on co-occurrences are often used to approximate interaction. Here, we present a new mathematical model to estimate the interaction strengths between taxa, based on changes in their relative abundances across environmental gradients.


Asunto(s)
Consorcios Microbianos/genética , Modelos Teóricos , Microbiología del Suelo , Secuencia de Bases , Ecosistema , Alemania , Concentración de Iones de Hidrógeno , Consorcios Microbianos/fisiología , Modelos Estadísticos , Distribución Aleatoria , Suelo/química
14.
Oecologia ; 183(2): 571-586, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27904966

RESUMEN

Climate warming is shifting the elevational boundary between forests and tundra upwards, but the related belowground responses are poorly understood. In the pristine South and Polar Urals with shifts of the treeline ecotone documented by historical photographs, we investigated fine root dynamics and production of extramatrical mycorrhizal mycelia (EMM) along four elevational transects reaching from the closed forest to the treeless tundra. In addition, we analysed elevational differences in climate and vegetation structure, and excavated trees to estimate related changes in the partitioning between below- and aboveground biomass. Fine root biomass of trees (<2 mm) increased by 13-79% with elevation, paralleled by a 35-72% increase in ground vegetation fine roots from the closed forest to the tundra. During the first year of decomposition, mass loss of fine root litter from different vegetation types was greater at lower elevations in the forest-tundra ecotone. The ratio between fine roots of trees and stem biomass largely increased with elevation in both regions, but these increases were not accompanied by a distinct production of EMM. Production of EMM, however, increased with the presence of ectomycorrhizal trees at the transition from the tundra to the forest. Our results imply that the recorded upward expansion of forest into former tundra in the Ural Mountains by 4-8 m per decade is decreasing the partitioning of plant biomass to fine roots. They further suggest that climate-driven forest advances will alter EMM production rates with potential feedbacks on soil carbon and nutrient cycling in these ecosystems.


Asunto(s)
Bosques , Tundra , Biomasa , Ecosistema , Raíces de Plantas , Suelo/química , Árboles
15.
Nature ; 536(7617): 456-9, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27533038

RESUMEN

Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.


Asunto(s)
Biodiversidad , Cadena Alimentaria , Animales , Biomasa , Alemania , Pradera , Herbivoria , Insectos , Microbiología , Modelos Biológicos , Plantas
16.
Sci Total Environ ; 566-567: 215-222, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27220098

RESUMEN

Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ(13)C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier (13)C due to closing stomata leading to an enrichment of (13)C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ(13)C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ(13)C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ(13)C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change.


Asunto(s)
Agricultura , Biodiversidad , Sequías , Fertilizantes/análisis , Pradera , Plantas , Alemania
17.
Artículo en Inglés | MEDLINE | ID: mdl-27114572

RESUMEN

Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity-multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.


Asunto(s)
Biodiversidad , Pradera , Agricultura , Conservación de los Recursos Naturales , Alemania , Densidad de Población
18.
Ecol Lett ; 18(8): 834-843, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26096863

RESUMEN

Global change, especially land-use intensification, affects human well-being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real-world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land-use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land-use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast-growing plant species, strongly increased provisioning services in more inherently unproductive grasslands.


Asunto(s)
Agricultura/métodos , Biodiversidad , Pradera , Alemania , Modelos Lineales , Suelo/química
19.
New Phytol ; 204(4): 932-42, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25196967

RESUMEN

We used bomb-radiocarbon and raw minirhizotron lifetimes of fine roots (< 0.5 mm in diameter) in the organic layer of Norway spruce (Picea abies) forests in southern Sweden to test if different models are able to reconcile the apparently contradicting turnover time estimates from both techniques. We present a framework based on survival functions that is able to jointly model bomb-radiocarbon and minirhizotron data. At the same time we integrate prior knowledge about biases of both techniques--the classification of dead roots in minirhizotrons and the use of carbon reserves to grow new roots. Two-pool models, either in parallel or in serial setting, were able to reconcile the bomb-radiocarbon and minirhizotron data. These models yielded a mean residence time of 3.80 ± 0.16 yr (mean ± SD). On average 60 ± 2% of fine roots turned over within 0.75 ± 0.10 yr, while the rest was turning over within 8.4 ± 0.2 yr. Bomb-radiocarbon and minirhizotron data alone give a biased estimate of fine-root turnover. The two-pool models allow a mechanistic interpretation for the coexistence of fast- and slow-cycling roots--suberization and branching for the serial-two-pool model and branching due to ectomycorrhizal fungi-root interactions for the parallel-two-pool model.


Asunto(s)
Radioisótopos de Carbono/análisis , Modelos Biológicos , Picea/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Teorema de Bayes , Calibración , Bosques , Análisis de Supervivencia , Suecia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...