Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Radiat Isot ; 68(6): 1040-8, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20167503

RESUMEN

In this study, true coincidence-summing (TCS) correction factors have been measured for the sources (22)Na, (60)Co, (133)Ba and (152)Eu by use of three large volume coplanar grid CdZnTe (acronym: CZT) detectors. In case of a close-in detection geometry, two different TCS calculation algorithms were used to compute the required TCS correction factors. Both of the algorithms are based on the measured total-to-peak (TTP) ratio and full-energy peak (FEP) efficiency values that were obtained using almost "single" energy and coincidence-free nuclides. The results for TCS correction factors obtained by two different algorithms were agreeable to each other. The obtained TCS factors were ranged from about 7% to 30.5% in a 2250 mm(3) CZT detector when a close counting geometry was used. For other two detectors with a volume of 1000 and 1687.5mm(3), the resulted TCS correction factors were relatively smaller and varied between about 0.1% and 20% at the close counting geometry condition. Therefore, the results indicate that there is a need for the estimation of TCS corrections in CZT detectors, especially when their crystal volumes are greater than 1cm(3) and these detectors are used in the case of a close-in detection geometry.

2.
Radiat Prot Dosimetry ; 138(3): 264-77, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19843544

RESUMEN

When the high-resolution gamma-ray spectrometry was used in the analysis of (234)U and (230)Th in samples, there is a much more need to correct for the measured activity results of (234)U and (230)Th mainly due to self-absorption effects and the interfering lines from (226)Ra, (235)U, (238)U and their decay products that often might be present in the samples. Therefore, in the present study, the methods for the spectral interference corrections for the analytical peaks of (234)U and (230)Th are suggested to take into account the contributions of the overlapping gamma rays to these peaks. For the method validation, direct gamma-ray spectrometric measurements were carried out using certified reference materials (CRM) by use of a 76.5 % n-type Ge detector. The activities measured for the CRM samples were corrected for spectral interferences, self-absorption and true coincidence-summing (TCS) effects. The obtained results indicate that ignoring of the contribution of the interference gamma rays to the main analytical peak at 53.2 keV of (234)U leads to a lager systematic error of 87.3-90.4 % for the measured activities of (234)U, and similarly if one ignores the contributions of the interference gamma rays to the main analytical peak at 67.7 keV of (230)Th, this leads to a much smaller systematic error of 2.1-2.7 % for the activities of (230)Th. Therefore, the required correction factors for spectral interferences to the analytical peaks of (234)U and (230)Th are not negligible and thus they should also be considered besides necessary self-absorption factors to determine more accurate activities in the samples. On the other hand, it is estimated that although the TCS effects on the main analytical peaks of both (234)U and (230)Th are negligibly small, those TCS correction factors for their interference gamma rays to these peaks should be taken into account when direct measurements are performed in a close-counting geometry condition. Otherwise, the resulted activities can have serious erroneous results for both (234)U and (230)Th while using gamma-ray spectrometry, thereby leading to inaccuracies in their derived quantities, for instance, the corresponding age determinations of the samples.


Asunto(s)
Artefactos , Espectrometría gamma/métodos , Torio/análisis , Uranio/análisis , Algoritmos , Humanos , Dosis de Radiación , Estándares de Referencia
3.
Appl Radiat Isot ; 67(11): 2049-56, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19683454

RESUMEN

In this study, the spectral interferences are investigated for the analytical peaks at 63.3 keV of (234)Th and 1001.0 keV of (234m)Pa, which are often used in the measurement of (238)U activity by the gamma-ray spectrometry. The correction methods are suggested to estimate the net peak areas of the gamma-rays overlapping the analytical peaks, due to the contribution of (232)Th that may not be negligible in materials rich in natural thorium. The activity results for the certified reference materials (CRMs) containing U and Th were measured with a well type Ge detector. The self-absorption and true coincidence-summing (TCS) effects were also taken into account in the measurements. It is found that ignoring the contributions of the interference gamma-rays of (232)Th and (235)U to the mixed peak at 63.3 keV of (234)Th ((238)U) leads to the remarkably large systematic influence of 0.8-122% in the measured (238)U activity, but in case of ignoring the contribution of (232)Th via the interference gamma-ray at 1000.7 keV of (228)Ac to the mixed peak at 1001 keV of (234m)Pa ((238)U) results in relatively smaller systematic influence of 0.05-3%, depending on thorium contents in the samples. The present results showed that the necessary correction for the spectral interferences besides self-absorption and TCS effects is also very important to obtain more accurate (238)U activity results. Additionally, if one ignores the contribution of (232)Th to both (238)U and (40)K activities in materials, the maximum systematic influence on the effective radiation dose is estimated to be ~6% and ~1% via the analytical peaks at 63.3 and 1001 keV for measurement of the (238)U activity, respectively.


Asunto(s)
Algoritmos , Artefactos , Espectrometría gamma/métodos , Torio/análisis , Torio/química , Uranio/análisis , Uranio/química , Dosis de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA