Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891813

RESUMEN

We investigated the pharmacokinetic pathway of berberine and its metabolites in vitro, in Caco-2 cells, and in human participants following the administration of dihydroberberine (DHB) and micellar berberine (LipoMicel®, LMB) formulations. A pilot trial involving nine healthy volunteers was conducted over a 24 h period; blood samples were collected and subjected to Ultra High-Performance Liquid Chromatography-High Resolution Mass Spectrometry (UHPLC-HRMS) analyses to quantify the concentrations of berberine and its metabolites. Pharmacokinetic correlations indicated that berberrubine and thalifendine follow distinct metabolic pathways. Additionally, jatrorrhizine sulfate appeared to undergo metabolism differently compared to the other sulfated metabolites. Moreover, berberrubine glucuronide likely has a unique metabolic pathway distinct from other glucuronides. The human trial revealed significantly higher blood concentrations of berberine metabolites in participants of the DHB treatment group compared to the LMB treatment group-except for berberrubine glucuronide, which was only detected in the LMB treatment group. Similarly, results from in vitro investigations showed significant differences in berberine metabolite profiles between DHB and LMB. Dihydroberberine, dihydroxy-berberrubine/thalifendine and jatrorrhizine sulfate were detected in LMB-treated cells, but not in DHB-treated cells; thalifendine and jatrorrhizine-glucuronide were detected in DHB-treated cells only. While DHB treatment provided higher blood concentrations of berberine and most berberine metabolites, both in vitro (Caco-2 cells) and in vivo human studies showed that treatment with LMB resulted in a higher proportion of unmetabolized berberine compared to DHB. These findings suggest potential clinical implications that merit further investigation in future large-scale trials.


Asunto(s)
Berberina , Micelas , Humanos , Berberina/análogos & derivados , Berberina/farmacocinética , Berberina/sangre , Berberina/metabolismo , Células CACO-2 , Proyectos Piloto , Masculino , Adulto , Femenino , Cromatografía Líquida de Alta Presión
2.
Nutrients ; 16(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38892507

RESUMEN

The aim of this pilot study was to evaluate and compare bioavailability and safety of two Vitamin D3 formulations (softgels) in healthy adults, at single daily doses of 1000 and 2500 IU, over a 60-day period. A total of 69 participants were initially screened for eligibility in a double-blind randomized study with a four-arm parallel design; 35 participants were randomized to treatment groups: (1) standard Vitamin D3 1000 IU (STD1000), (2) micellar Vitamin D3 1000 IU (LMD1000), (3) standard Vitamin D3 2500 IU (STD2500), and (4) micellar Vitamin D3 2500 IU (LMD2500). Serum Vitamin D concentrations were determined through calcifediol [25(OH)D] at baseline (=before treatment), at day 5, 10, and 15 (=during treatment), at day 30 (=end of treatment), and at day 45 and 60 (=during follow-up/post treatment). Safety markers and minerals were evaluated at baseline and at day 30 and day 60. The pharmacokinetic parameters with respect to iAUC were found to be significantly different between LMD1000 vs. STD1000: iAUC(5-60): 992 ± 260 vs. 177 ± 140 nmol day/L; p < 0.05, suggesting up to 6 times higher Vitamin D3 absorption of LMD when measured incrementally. During follow-up, participants in the LMD1000 treatment group showed approx. 7 times higher Vitamin D3 concentrations than the STD1000 group (iAUC(30-60): 680 ± 190 vs. 104 ± 91 nmol day/L; p < 0.05). However, no significant differences were found between the pharmacokinetics of the higher dosing groups STD2500 and LMD2500. No significant changes in serum 1,25(OH)2D concentrations or other biochemical safety markers were detected at day 60; no excess risks of hypercalcemia (i.e., total serum calcium > 2.63 mmol/L) or other adverse events were identified. LMD, a micellar delivery vehicle for microencapsulating Vitamin D3 (LipoMicel®), proved to be safe and only showed superior bioavailability when compared to standard Vitamin D at the lower dose of 1000 IU. This study has clinical trial registration: NCT05209425.


Asunto(s)
Disponibilidad Biológica , Colecalciferol , Suplementos Dietéticos , Micelas , Humanos , Proyectos Piloto , Colecalciferol/administración & dosificación , Colecalciferol/farmacocinética , Colecalciferol/efectos adversos , Masculino , Femenino , Método Doble Ciego , Adulto , Administración Oral , Persona de Mediana Edad , Adulto Joven , Calcifediol/sangre , Calcifediol/administración & dosificación , Calcifediol/farmacocinética , Vitamina D/sangre , Vitamina D/administración & dosificación , Vitamina D/análogos & derivados , Vitamina D/farmacocinética
3.
Metabolites ; 14(5)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38786742

RESUMEN

This study evaluated the differences in the metabolite profile of three n-3 FA fish oil formulations in 12 healthy participants: (1) standard softgels (STD) providing 600 mg n-3 FA; (2) enteric-coated softgels (ENT) providing 600 mg n-3 FA; (3) a new micellar formulation (LMF) providing 374 mg n-3 FA. The pharmacokinetics (PKs), such as the area under the plot of plasma concentration (AUC), and the peak blood concentration (Cmax) of the different FA metabolites including HDHAs, HETEs, HEPEs, RvD1, RvD5, RvE1, and RvE2, were determined over a total period of 24 h. Blood concentrations of EPA (26,920.0 ± 10,021.0 ng/mL·h) were significantly higher with respect to AUC0-24 following LMF treatment vs STD and ENT; when measured incrementally, blood concentrations of total n-3 FAs (EPA/DHA/DPA3) up to 11 times higher were observed for LMF vs STD (iAUC 0-24: 16,150.0 ± 5454.0 vs 1498.9 ± 443.0; p ≤ 0.0001). Significant differences in n-3 metabolites including oxylipins were found between STD and LMF with respect to 12-HEPE, 9-HEPE, 12-HETE, and RvD1; 9-HEPE levels were significantly higher following the STD vs. ENT treatment. Furthermore, within the scope of this study, changes in blood lipid levels (i.e., cholesterol, triglycerides, LDL, and HDL) were monitored in participants for up to 120 h post-treatment; a significant decrease in serum triglycerides was detected in participants (~20%) following the LMF treatment; no significant deviations from the baseline were detected for all the other lipid biomarkers in any of the treatment groups. Despite a lower administered dose, LMF provided higher blood concentrations of n-3 FAs and certain anti-inflammatory n-3 metabolites in human participants-potentially leading to better health outcomes.

4.
Pharmaceutics ; 15(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38004546

RESUMEN

Berberine is a plant-origin quaternary isoquinoline alkaloid with a vast array of biological activities, including antioxidant and blood-glucose- and blood-lipid-lowering effects. However, its therapeutic potential is largely limited by its poor oral bioavailability. The aim of this study was to investigate the in vitro solubility and Caco-2 cell permeability followed by pharmacokinetic profiling in healthy volunteers of a new food-grade berberine delivery system (i.e., Berberine LipoMicel®). X-ray diffractometry (XRD), in vitro solubility, and Caco-2 cell permeability indicated higher bioavailability of LipoMicel Berberine (LMB) compared to the standard formulation. Increased aqueous solubility (up to 1.4-fold), as well as improved Caco-2 cell permeability of LMB (7.18 × 10-5 ± 7.89 × 10-6 cm/s), were observed when compared to standard/unformulated berberine (4.93 × 10-6 ± 4.28 × 10-7 cm/s). Demonstrating better uptake, LMB achieved significant increases in AUC0-24 and Cmax compared to the standard formulation (AUC: 78.2 ± 14.4 ng h/mL vs. 13.4 ± 1.97 ng h/mL, respectively; p < 0.05; Cmax: 15.8 ± 2.6 ng/mL vs. 1.67 ± 0.41 ng/mL) in a pilot study of healthy volunteers (n = 10). No adverse reactions were reported during the study period. In conclusion, LMB presents a highly bioavailable formula with superior absorption (up to six-fold) compared to standard berberine formulation and may, therefore, have the potential to improve the therapeutic efficacy of berberine. The study has been registered on ClinicalTrials.gov with Identifier NCT05370261.

5.
Artículo en Inglés | MEDLINE | ID: mdl-37600550

RESUMEN

This study aimed to evaluate the blood concentrations of quercetin in healthy participants after the administration of different formulations in single- and multiple-dose phases. Ten healthy adults (males, 5; females, 5; age 37 ± 11 years) participated in a diet-controlled, crossover pilot study. Participants received three different doses (250 mg, 500 mg, or 1000 mg) of quercetin aglycone orally. In the single-dose study, blood concentrations (AUC0-24 and Cmax) of standard quercetin were compared with those of LipoMicel®-a food-grade delivery form of quercetin. In the multiple-dose study, blood concentrations of formulated quercetin were observed over 72 h, after repeated doses of LipoMicel (LM) treatments. The AUC0-24 ranged from 77.3 to 1128.9 ng·h/ml: LM significantly increased blood concentrations of quercetin by 7-fold (LM 500) compared to standard quercetin, when tested at the same dose, over 24 h (p < 0.001); LM administered at a higher dose (LM 1000) achieved 15-fold higher absorption (p < 0.001); LM tested at half a dose of standard quercetin increased concentration by approx. 3-fold (LM 250). Quercetin blood concentrations were attained over 72 h. The major metabolites measured in the blood were methylated, sulfate, and glutathione (GSH) conjugates of quercetin. Significant differences in concentrations between quercetin conjugates (sulfate vs. methyl vs. GSH) were observed (p < 0.001). Data obtained from this study suggest that supplementation with LipoMicel® is a promising strategy to increase the absorption of quercetin and its health-promoting effects in humans. However, due to the low sample size in this pilot study, further research is still warranted to confirm the observations in larger populations. This trial is registered with NCT05611827.

6.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240008

RESUMEN

Randomized clinical trials (RCT) and observational studies have highlighted the importance of flavonoid consumption for human health. Several studies have associated a high intake of dietary flavonoids with (a) enhanced metabolic and cardiovascular health, (b) enhanced cognitive and vascular endothelial functions, (c) an improved glycemic response in type 2 diabetes mellitus, and (d) a reduced risk of breast cancer in postmenopausal women. Since flavonoids belong to a broad and diverse family of polyphenolic plant molecules-with more than 6000 compounds interspersed in the human diet-researchers are still uncertain whether the intake of single, individual polyphenols or a large combination of them (i.e., synergistic action) can produce the greatest health benefits for humans. Furthermore, studies have reported a poor bioavailability of flavonoid compounds in humans, which presents a major challenge for determining their optimal dosage, recommended intake, and, consequently, their therapeutic value. Especially because of their scarce bioavailability from foods-along with the overall declining food quality and nutrient density in foods-the role of flavonoid supplementation may become increasingly important for human health. Although research shows that dietary supplements can be a highly useful tool to complement diets that lack sufficient amounts of important nutrients, some caution is warranted regarding possible interactions with prescription and non-prescription drugs, especially when taken concurrently. Herein, we discuss the current scientific basis for using flavonoid supplementation to improve health as well as the limitations related to high intakes of dietary flavonoids.


Asunto(s)
Suplementos Dietéticos , Flavonoides , Femenino , Humanos , Flavonoides/uso terapéutico , Dieta , Polifenoles
7.
Plants (Basel) ; 11(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36235428

RESUMEN

The most prominent horsetail species, Equisetum arvense, has an array of different medicinal properties, thus the proper authentication and differentiation of the plant from the more toxic Equisetum palustre is important. This study sought to identify different samples of E. arvense and E. palustre using three analytical methods. The first method involved the use of HPTLC analysis, as proposed by the European Pharmacopoeia. The second, HPLC-ESI-MS/MS, is capable of both identification and quantification and was used to determine the Equisetum alkaloid content in each sample. A third method was DNA barcoding, which identifies the samples based on their genetic make-up. Both HPTLC and HPLC-ESI-MS/MS proved to be suitable methods of identification, with HPLC-ESI-MS/MS proving the more sophisticated method for the quantification of alkaloids in the Equisetum samples and for determining the adulteration of E. arvense. For DNA barcoding, optimal primer pairs were elucidated to allow for the combined use of the rbcL and ITS markers to accurately identify each species. As new DNA marker sequences were added to GenBank, the reference library has been enriched for future work with these horsetail species.

8.
Antibiotics (Basel) ; 10(9)2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34572657

RESUMEN

Antibiotic resistance is a growing problem and may become the next major global health crisis if no timely actions are taken. Mycobacterial infections are widespread and, due to antibiotic resistance, also hard to treat and a major cause of mortality. Natural compounds have the potential to increase antibiotic effectiveness due to their resistance modulatory and antimicrobial effects. In this study, Peucedanum ostruthium extracts, fractions, and isolated compounds were investigated regarding their antimicrobial and resistance-modulatory effects as well as efflux pump inhibition in Mycobacterium smegmatis. P. ostruthium extracts were found to have anti-mycobacterial potential and resistance modulating effects on ethidium bromide activity. The major antibacterial effect was attributed to ostruthin, and we found that the more lipophilic the substrate, the greater the antimicrobial effect. Imperatorin caused potent modulatory effects by interfering with the action of the major LfrA efflux pump in M. smegmatis. The plant P. ostruthuim has a complex effect on M. smegmatis, including antibacterial, efflux pump inhibition, resistance modulation, and membrane permeabilization, and its major constituents, ostruthin and imperatorin, have a distinct role in these effects. This makes P. ostruthium and its coumarins promising therapeutics to consider in the fight against drug-resistant mycobacteria.

9.
Phytochem Rev ; 20(4): 773-795, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32982616

RESUMEN

COVID-19, the highly contagious novel disease caused by SARS-CoV-2, has become a major international concern as it has spread quickly all over the globe. However, scientific knowledge and therapeutic treatment options for this new coronavirus remain limited. Although previous outbreaks of human coronaviruses (CoVs) such as SARS and MERS stimulated research, there are, to date, no antiviral therapeutics available that specifically target these kinds of viruses. Natural compounds with a great diversity of chemical structures may provide an alternative approach for the discovery of new antivirals. In fact, numerous flavonoids were found to have antiviral effects against SARS-and MERS-CoV by mainly inhibiting the enzymes 3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro). In this review, we specifically focused on the search for flavonoids, polyphenolic compounds, which are proven to be effective against human CoVs. We therefore summarized and analyzed the latest progress in research to identify flavonoids for antiviral therapy and proposed strategies for future work on medicinal plants against coronaviruses such as SARS-CoV-2. We discovered quercetin, herbacetin, and isobavachalcone as the most promising flavonoids with anti-CoV potential.

10.
Eur J Med Chem ; 207: 112837, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002847

RESUMEN

Malaria and tuberculosis are still among the leading causes of death in low-income countries. The 1,4-naphthoquinone (NQ) scaffold can be found in a variety of anti-infective agents. Herein, we report an optimised, high yield process for the preparation of various 2-arylnaphthoquinones by a palladium-catalysed Suzuki reaction. All synthesised compounds were evaluated for their in-vitro antiprotozoal and antimycobacterial activity. Antiprotozoal activity was assessed against Plasmodium falciparum (P.f.) NF54 and Trypanosoma brucei rhodesiense (T.b.r.) STIB900, and antimycobacterial activity against Mycobacterium smegmatis (M.s.) mc2 155. Substitution with pyridine and pyrimidine rings significantly increased antiplasmodial potency of our compounds. The 2-aryl-NQs exhibited trypanocidal activity in the nM range with a very favourable selectivity profile. (Pseudo)halogenated aryl-NQs were found to have a pronounced effect indicating inhibition of mycobacterial efflux pumps. Cytotoxicity of all compounds towards L6 cells was evaluated and the respective selectivity indices (SI) were calculated. In addition, the physicochemical parameters of the synthesised compounds were discussed.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Antiprotozoarios/síntesis química , Antiprotozoarios/farmacología , Paladio/química , Quinonas/síntesis química , Quinonas/farmacología , Antibacterianos/química , Antiprotozoarios/química , Catálisis , Técnicas de Química Sintética , Mycobacterium smegmatis/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Quinonas/química , Trypanosoma brucei rhodesiense/efectos de los fármacos
11.
Antibiotics (Basel) ; 9(7)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650510

RESUMEN

Carvotacetones (1-7) isolated from Sphaeranthus africanus were screened for their antimycobacterial and efflux pump (EP) inhibitory potential against the mycobacterial model strains Mycobacterium smegmatis mc2 155, Mycobacterium aurum ATCC 23366, and Mycobacterium bovis BCG ATCC 35734. The minimum inhibitory concentrations (MICs) of the carvotacetones were detected through high-throughput spot culture growth inhibition (HT-SPOTi) and microbroth dilution assays. In order to assess the potential of the compounds 1 and 6 to accumulate ethidium bromide (EtBr) in M. smegmatis and M. aurum, a microtiter plate-based fluorometric assay was used to determine efflux activity. Compounds 1 and 6 were analyzed for their modulating effects on the MIC of EtBr and the antibiotic rifampicin (RIF) against M. smegmatis. Carvotacetones 1 and 6 had potent antibacterial effects on M. aurum and M. bovis BCG (MIC ≤ 31.25 mg/L) and could successfully enhance EtBr activity against M. smegmatis. Compound 1 appeared as the most efficient agent for impairing the efflux mechanism in M. smegmatis. Both compounds 1 and 6 were highly effective against M. aurum and M. bovis BCG. In particular, compound 1 was identified as a valuable candidate for inhibiting mycobacterial efflux mechanisms and as a promising adjuvant in the therapy of tuberculosis or other non-tubercular mycobacterial infections.

12.
Molecules ; 25(3)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046221

RESUMEN

Therapeutic treatment options for opportunistic non-tuberculous mycobacterial (NTM) infection and/or serious mycobacterial infections such as tuberculosis (TB) and leprosy are limited due to the spread of antimicrobial resistance mechanism. Plant-derived natural compounds as prospective efflux pump inhibitors may present a promising adjunct to conventional chemotherapy by enhancing mycobacterial susceptibility to antibiotics. This study served to evaluate the antimicrobial and resistance-modifying profile of a range of plant-derived flavonoids against the mycobacterial model strains: M. smegmatis, M. aurum, and M. bovis BCG. The minimum inhibitory concentrations (MICs) of the compounds against the mycobacterial strains were determined using both agar dilution and broth dilution assays, while their efflux inhibitory activity was investigated via an ethidium bromide-based fluorometric assay. All compounds were screened for their synergistic effects with ethidium bromide (EtBr) and rifampicin (RIF) against M. smegmatis. Skullcapflavone II (5,2'-dihydroxy-6,7,8,6'-tetramethoxyflavone, 1) exerted potent antimicrobial activity against M. aurum and M. bovis BCG and considerably increased the susceptibility of M. smegmatis to EtBr and RIF. Nobiletin (5,6,7,8,3',4'-hexamethoxyflavone, 2) was determined to be the most potent efflux-inhibitor in M. aurum and M. smegmatis. However, a connection between strong modulatory and putative efflux activity of the compounds could not be observed. Nevertheless, the results highlight two polymethoxyflavones, skullcapflavone II and nobiletin, with potent antimycobacterial and antibiotic resistance modulating activities as valuable adjuvants in anti-mycobacterial therapies.


Asunto(s)
Antiinfecciosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Flavonoides/farmacología , Mycobacterium/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Transporte Biológico/efectos de los fármacos , Etidio/química , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana/métodos , Mycobacterium/metabolismo , Infecciones por Mycobacterium/tratamiento farmacológico , Rifampin/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...