Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Geophys Res Solid Earth ; 127(3): e2021JB023314, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35866035

RESUMEN

Ab initio molecular dynamics calculations on a carbonate-silicate-metal melt were performed to study speciation and coordination changes as a function of pressure and temperature. We examine in detail the bond abundances of specific element pairs and the distribution of coordination environments over conditions spanning Earth's present-day mantle. Average coordination numbers increase continuously from 4 to 8 for Fe and Mg, from 4 to 6 for Si, and from 2 to 4 for C from 1 to 148 GPa (4,000 K). Speciation across all pressure and temperature conditions is complex due to the unusual bonding of carbon. With the increasing pressure, C-C and C-Fe bonding increase significantly, resulting in the formation of carbon polymers, C-Fe clusters, and the loss of carbonate groups. The increased bonding of carbon with elements other than oxygen indicates that carbon begins to replace oxygen as an anion in the melt network. We evaluate our results in the context of diamond formation and of metal-silicate partitioning behavior of carbon. Our work has implications for properties of carbon and metal-bearing silicate melts, such as viscosity, electrical conductivity, and reactivity with surrounding phases.

2.
J Geophys Res Solid Earth ; 124(11): 11232-11250, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32025456

RESUMEN

With ab initio molecular dynamics simulations on a Na-, Ca-, Fe-, Mg-, and Al-bearing silicate melt of pyrolite composition, we examine the detailed changes in elemental coordination as a function of pressure and temperature. We consider the average coordination as well as the proportion and distribution of coordination environments at pressures and temperatures encompassing the conditions at which molten silicates may exist in present-day Earth and those of the Early Earth's magma ocean. At ambient pressure and 2,000 K, we find that the average coordination of cations with respect to oxygen is 4.0 for Si-O, 4.0 for Al-O, 3.7 for Fe-O, 4.6 for Mg-O, 5.9 for Na-O, and 6.2 for Ca-O. Although the coordination for iron with respect to oxygen may be underestimated, the coordination number for all other cations are consistent with experiments. By 15 GPa (2,000 K), the average coordination for Si-O remains at 4.0 but increases to 4.1 for Al-O, 4.2 for Fe-O, 4.9 for Mg-O, 8.0 for Na-O, and 6.8 for Ca-O. The coordination environment for Na-O remains approximately constant up to core-mantle boundary conditions (135 GPa and 4000 K) but increases to about 6 for Si-O, 6.5 for Al-O, 6.5 for Fe-O, 8 for Mg-O, and 9.5 for Ca-O. We discuss our results in the context of the metal-silicate partitioning behavior of siderophile elements and the viscosity changes of silicate melts at upper mantle conditions. Our results have implications for melt properties, such as viscosity, transport coefficients, thermal conductivities, and electrical conductivities, and will help interpret experimental results on silicate glasses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...