Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Ecol Lett ; 23(12): 1800-1808, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32945617

RESUMEN

The limits on primary production vary in complex ways across space and time. Strong tests of clear conceptual models have been instrumental in understanding these patterns in both terrestrial and aquatic ecosystems. Here we present the first experimental test of a new model describing how shifts from nutrient to light limitation control primary productivity in lake ecosystems as hydrological inputs of nutrients and organic matter vary. We found support for two key predictions of the model: that gross primary production (GPP) follows a hump-shaped relationship with increasing dissolved organic carbon (DOC) concentrations; and that the maximum GPP, and the critical DOC concentration at which the hump occurs, are determined by the stoichiometry and chromophoricity of the hydrological inputs. Our results advance fundamental understanding of the limits on aquatic primary production, and have important applications given ongoing anthropogenic alterations of the nutrient and organic matter inputs to surface waters.


Asunto(s)
Ecosistema , Lagos , Carbono , Nutrientes
3.
Ecol Evol ; 7(16): 6201-6209, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28861225

RESUMEN

Resource availability constrains the life history strategies available to organisms and may thereby limit population growth rates and productivity. We used this conceptual framework to explore the mechanisms driving recently reported negative relationships between fish productivity and dissolved organic carbon (DOC) concentrations in lakes. We studied populations of bluegill (Lepomis macrochirus) in a set of lakes with DOC concentrations ranging from 3 to 24 mg/L; previous work has demonstrated that primary and secondary productivity of food webs is negatively related to DOC concentration across this gradient. For each population, we quantified individual growth rate, age at maturity, age-specific fecundity, maximum age, length-weight and length-egg size relationships, and other life history characteristics. We observed a strong negative relationship between maximum size and DOC concentration; for instance, fish reached masses of 150 to 260 g in low-DOC lakes but <120 g in high-DOC lakes. Relationships between fecundity and length, and between egg size and length, were constant across the DOC gradient. Because fish in high-DOC lakes reached smaller sizes but had similar fecundity and egg size at a given size, their total lifetime fecundity was as much as two orders of magnitude lower than fish in low-DOC lakes. High DOC concentrations appeared to constrain the range of bluegill life history strategies available; populations in high-DOC lakes always had low initial growth rates and high ages at maturity, whereas populations in low-DOC showed higher variability in these traits. This was also the case for the intrinsic rates of natural increase of these populations, which were always low at the high end of the DOC gradient. The potentially lower capacity for fish populations in high-DOC lakes to recover from exploitation has clear implications for the sustainable management of recreational fisheries in the face of considerable spatial heterogeneity and ongoing temporal change in lake DOC concentrations.

4.
Sci Adv ; 3(3): e1601765, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28345035

RESUMEN

Widespread evidence that organic matter exported from terrestrial into aquatic ecosystems supports recipient food webs remains controversial. A pressing question is not only whether high terrestrial support is possible but also what the general conditions are under which it arises. We assemble the largest data set, to date, of the isotopic composition (δ2H, δ13C, and δ15N) of lake zooplankton and the resources at the base of their associated food webs. In total, our data set spans 559 observations across 147 lakes from the boreal to subtropics. By predicting terrestrial resource support from within-lake and catchment-level characteristics, we found that half of all consumer observations that is, the median were composed of at least 42% terrestrially derived material. In general, terrestrial support of zooplankton was greatest in lakes with large physical and hydrological connections to catchments that were rich in aboveground and belowground organic matter. However, some consumers responded less strongly to terrestrial resources where within-lake production was elevated. Our study shows that multiple mechanisms drive widespread cross-ecosystem support of aquatic consumers across Northern Hemisphere lakes and suggests that changes in terrestrial landscapes will influence ecosystem processes well beyond their boundaries.


Asunto(s)
Cadena Alimentaria , Lagos , Modelos Biológicos
5.
Ecol Appl ; 27(1): 56-65, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28052508

RESUMEN

Many ecosystems continue to experience rapid transformations due to processes like land use change and resource extraction. A systems approach to maintaining natural resources focuses on how interactions and feedbacks among components of complex social-ecological systems generate social and ecological outcomes. In recreational fisheries, residential shoreline development and fish stocking are two widespread human behaviors that influence fisheries, yet emergent social-ecological outcomes from these potentially interacting behaviors remain under explored. We applied a social-ecological systems framework using a simulation model and empirical data to determine whether lakeshore development is likely to promote stocking through its adverse effects on coarse woody habitat and thereby also on survival of juvenile and adult fish. We demonstrate that high lakeshore development is likely to generate dependency of the ecosystem on the social system, in the form of stocking. Further, lakeshore development can interact with social-ecological processes to create deficits for state-level governments, which threatens the ability to fund further ecosystem subsidies. Our results highlight the value of a social-ecological framework for maintaining ecosystem services like recreational fisheries.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Lagos , Recreación , Medio Social , Wisconsin
6.
Glob Chang Biol ; 22(8): 2766-75, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26919470

RESUMEN

The observed pattern of lake browning, or increased terrestrial dissolved organic carbon (DOC) concentration, across the northern hemisphere has amplified the importance of understanding how consumer productivity varies with DOC concentration. Results from comparative studies suggest these increased DOC concentrations may reduce crustacean zooplankton productivity due to reductions in resource quality and volume of suitable habitat. Although these spatial comparisons provide an expectation for the response of zooplankton productivity as DOC concentration increases, we still have an incomplete understanding of how zooplankton respond to temporal increases in DOC concentration within a single system. As such, we used a whole-lake manipulation, in which DOC concentration was increased from 8 to 11 mg L(-1) in one basin of a manipulated lake, to test the hypothesis that crustacean zooplankton production should subsequently decrease. In contrast to the spatially derived expectation of sharp DOC-mediated decline, we observed a small increase in zooplankton densities in response to our experimental increase in DOC concentration of the treatment basin. This was due to significant increases in gross primary production and resource quality (lower seston carbon-to-phosphorus ratio; C:P). These results demonstrate that temporal changes in lake characteristics due to increased DOC may impact zooplankton in ways that differ from those observed in spatial surveys. We also identified significant interannual variability across our study region, which highlights potential difficulty in detecting temporal responses of organism abundances to gradual environmental change (e.g., browning).


Asunto(s)
Carbono/análisis , Lagos , Zooplancton/crecimiento & desarrollo , Animales , Carbono/metabolismo , Crustáceos , Ecosistema
7.
Ecology ; 96(8): 2257-64, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26405750

RESUMEN

Predicting ecosystem function from environmental conditions is a central goal of ecosystem ecology. However, many traditional ecosystem models are tailored for specific regions or ecosystem types, requiring several regional models to predict the same function. Alternatively, trait-based approaches have been effectively used to predict community structure in both terrestrial and aquatic environments and ecosystem function in a limited number of terrestrial examples. Here, we test the efficacy of a trait-based model in predicting gross primary production (GPP) in lake ecosystems. We incorporated data from >1000 United States lakes along with laboratory-generated phytoplankton trait data to build a trait-based model of GPP and then validated the model with GPP observations from a separate set of globally distributed lakes. The trait-based model performed as well as or outperformed two ecosystem models both spatially and temporally, demonstrating the efficacy of trait-based models for predicting ecosystem function over a range of environmental conditions.


Asunto(s)
Ecosistema , Lagos , Modelos Biológicos , Fitoplancton/fisiología , Factores de Tiempo
8.
PLoS One ; 10(1): e0116182, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25635686

RESUMEN

Stable isotopes of carbon, nitrogen, and sulfur are used as ecological tracers for a variety of applications, such as studies of animal migrations, energy sources, and food web pathways. Yet uncertainty relating to the time period integrated by isotopic measurement of animal tissues can confound the interpretation of isotopic data. There have been a large number of experimental isotopic diet shift studies aimed at quantifying animal tissue isotopic turnover rate λ (%·day(-1), often expressed as isotopic half-life, ln(2)/λ, days). Yet no studies have evaluated or summarized the many individual half-life estimates in an effort to both seek broad-scale patterns and characterize the degree of variability. Here, we collect previously published half-life estimates, examine how half-life is related to body size, and test for tissue- and taxa-varying allometric relationships. Half-life generally increases with animal body mass, and is longer in muscle and blood compared to plasma and internal organs. Half-life was longest in ecotherms, followed by mammals, and finally birds. For ectotherms, different taxa-tissue combinations had similar allometric slopes that generally matched predictions of metabolic theory. Half-life for ectotherms can be approximated as: ln (half-life) = 0.22*ln (body mass) + group-specific intercept; n = 261, p<0.0001, r2 = 0.63. For endothermic groups, relationships with body mass were weak and model slopes and intercepts were heterogeneous. While isotopic half-life can be approximated using simple allometric relationships for some taxa and tissue types, there is also a high degree of unexplained variation in our models. Our study highlights several strong and general patterns, though accurate prediction of isotopic half-life from readily available variables such as animal body mass remains elusive.


Asunto(s)
Dieta , Animales , Isótopos de Carbono/metabolismo , Isótopos de Carbono/farmacocinética , Semivida , Isótopos de Nitrógeno/metabolismo , Isótopos de Nitrógeno/farmacocinética , Especificidad de la Especie , Isótopos de Azufre/metabolismo , Isótopos de Azufre/farmacocinética , Distribución Tisular
9.
Environ Toxicol Chem ; 34(2): 215-23, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25470784

RESUMEN

The methylated form of mercury (methylmercury) is a potent neurotoxic chemical and a contaminant of concern for fisheries because of its potential effects on ecosystem and human health. In Africa, inland fisheries are a crucial component of food and economic security, yet little information is available on mercury (Hg) contamination trends. The authors compiled published data on Hg contamination in African freshwater fishes, invertebrates, and plankton, as well as on potential drivers of Hg concentrations in these organisms. From 30 identified studies the authors assembled 407 total Hg concentrations from 166 fish species, 10 types of invertebrates, and various plankton, distributed across 31 water bodies in 12 countries. In fishes, total Hg concentrations, expressed as mean (± standard deviation) per location, averaged 156.0 ± 328.0 ng/g wet weight and ranged from 5.5 ng/g wet weight to 1865.0 ng/g wet weight. Only locations with nearby artisanal and small-scale gold mining operations had mean Hg concentrations above the World Health Organization/Food and Agriculture Organization's recommended guideline for fish (500 ng/g wet wt). The authors used mixed models to detect relationships between fish Hg concentrations and trophic level, mass, latitude, and chlorophyll a. Mass, trophic level, and latitude were all positive predictors of Hg concentration, confirming the presence of Hg bioaccumulation and biomagnification in African fishes. Although strong trends in Hg concentrations were evident, the present study also highlights limited availability of Hg data in Africa.


Asunto(s)
Monitoreo del Ambiente , Peces/metabolismo , Agua Dulce/química , Mercurio/análisis , África , Animales , Clorofila/análisis , Clorofila A , Cadena Alimentaria , Humanos , Medición de Riesgo
10.
Ecology ; 95(5): 1236-42, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-25000755

RESUMEN

Inputs of terrestrial organic carbon (t-OC) into lakes are often considered a resource subsidy for aquatic consumer production. Although there is evidence that terrestrial carbon can be incorporated into the tissues of aquatic consumers, its ability to enhance consumer production has been debated. Our research aims to evaluate the net effect of t-OC input on zooplankton. We used a survey of zooplankton production and resource use in ten lakes along a naturally occurring gradient of t-OC concentration to address these questions. Total and group-specific zooplankton production was negatively related to t-OC. Residual variation in zooplankton production that was not explained by t-OC was negatively related to terrestrial resource use (allochthony) by zooplankton. These results challenge the designation of terrestrial carbon as a resource subsidy; rather, the negative effect of reduced light penetration on the amount of suitable habitat and the low resource quality of t-OC appear to diminish zooplankton production. Our findings suggest that ongoing continental-scale increases in t-OC concentrations of lakes will likely have negative impacts on the productivity of aquatic food webs.


Asunto(s)
Carbono/química , Carbono/metabolismo , Lagos/química , Zooplancton/fisiología , Animales , Ecosistema
11.
Ecology ; 92(5): 1115-25, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21661572

RESUMEN

Fluxes of organic matter across habitat boundaries are common in food webs. These fluxes may strongly influence community dynamics, depending on the extent to which they are used by consumers. Yet understanding of basal resource use by consumers is limited, because describing trophic pathways in complex food webs is difficult. We quantified resource use for zooplankton, zoobenthos, and fishes in four low-productivity lakes, using a Bayesian mixing model and measurements of hydrogen, carbon, and nitrogen stable isotope ratios. Multiple sources of uncertainty were explicitly incorporated into the model. As a result, posterior estimates of resource use were often broad distributions; nevertheless, clear patterns were evident. Zooplankton relied on terrestrial and pelagic primary production, while zoobenthos and fishes relied on terrestrial and benthic primary production. Across all consumer groups terrestrial reliance tended to be higher, and benthic reliance lower, in lakes where light penetration was low due to inputs of terrestrial dissolved organic carbon. These results support and refine an emerging consensus that terrestrial and benthic support of lake food webs can be substantial, and they imply that changes in the relative availability of basal resources drive the strength of cross-habitat trophic connections.


Asunto(s)
Carbono/metabolismo , Ecosistema , Monitoreo del Ambiente , Agua Dulce/química , Modelos Biológicos , Animales , Teorema de Bayes , Carbono/química , Isótopos de Carbono , Simulación por Computador , Crustáceos , Peces , Insectos , Zooplancton
12.
Proc Natl Acad Sci U S A ; 108(5): 1975-80, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21245299

RESUMEN

Cross-ecosystem subsidies to food webs can alter metabolic balances in the receiving (subsidized) system and free the food web, or particular consumers, from the energetic constraints of local primary production. Although cross-ecosystem subsidies between terrestrial and aquatic systems have been well recognized for benthic organisms in streams, rivers, and the littoral zones of lakes, terrestrial subsidies to pelagic consumers are more difficult to demonstrate and remain controversial. Here, we adopt a unique approach by using stable isotopes of H, C, and N to estimate terrestrial support to zooplankton in two contrasting lakes. Zooplankton (Holopedium, Daphnia, and Leptodiaptomus) are comprised of ≈ 20-40% of organic material of terrestrial origin. These estimates are as high as, or higher than, prior measures obtained by experimentally manipulating the inorganic (13)C content of these lakes to augment the small, natural contrast in (13)C between terrestrial and algal photosynthesis. Our study gives credence to a growing literature, which we review here, suggesting that significant terrestrial support of pelagic crustaceans (zooplankton) is widespread.


Asunto(s)
Carbono/metabolismo , Agua Dulce , Hidrógeno/metabolismo , Nitrógeno/metabolismo , Zooplancton/metabolismo , Animales , Isótopos , Especificidad de la Especie
13.
Oecologia ; 161(2): 313-24, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19471971

RESUMEN

Aquatic food webs are subsidized by allochthonous resources but the utilization of these resources by consumers can be difficult to quantify. Stable isotope ratios of hydrogen (deuterium:hydrogen; deltaD) potentially distinguish allochthonous inputs because deltaD differs between terrestrial and aquatic primary producers. However, application of this tracer is limited by uncertainties regarding the trophic fractionation of deltaD and the contributions of H from environmental water (often called "dietary water") to consumer tissue H. We addressed these uncertainties using laboratory experiments, field observations, modeling, and a literature synthesis. Laboratory experiments that manipulated the deltaD of water and food for insects, cladoceran zooplankton, and fishes provided strong evidence that trophic fractionation of deltaD was negligible. The proportion of tissue H derived from environmental water was substantial yet variable among studies; estimates of this proportion, inclusive of lab, field, and literature data, ranged from 0 to 0.39 (mean 0.17 +/- 0.12 SD). There is a clear need for additional studies of environmental water. Accounting for environmental water in mixing models changes estimates of resource use, although simulations suggest that uncertainty about the environmental water contribution does not substantially increase the uncertainty in estimates of resource use. As long as this uncertainty is accounted for, deltaD may be a powerful tool for estimating resource use in food webs.


Asunto(s)
Aedes/química , Daphnia/química , Deuterio/análisis , Cadena Alimentaria , Agua Dulce/química , Trucha/metabolismo , Animales , Cromatografía de Gases , Simulación por Computador , Larva/química , Modelos Biológicos , Músculo Esquelético/química
14.
Oecologia ; 159(1): 161-70, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18941789

RESUMEN

With ecosystems increasingly supporting multiple invasive species, interactions among invaders could magnify or ameliorate the undesired consequences for native communities and ecosystems. We evaluated the individual and combined effects of rusty crayfish (Orconectes rusticus) and Chinese mystery snails [Bellamya (=Cipangopaludina) chinensis] on native snail communities (Physa, Helisoma and Lymnaea sp.) and ecosystem attributes (algal chlorophyll a and nutrient concentrations). Both invaders are widespread in the USA and commonly co-occur within northern temperate lakes, underscoring the importance of understanding their singular and joint effects. An outdoor mesocosm experiment revealed that while the two invaders had only weakly negative effects upon one another, both negatively affected the abundance and biomass of native snails, and their combined presence drove one native species to extinction and reduced a second by >95%. Owing to its larger size and thicker shell, adult Bellamya were protected from crayfish attack relative to native species (especially Physa and Lymnaea), suggesting the co-occurrence of these invaders in nature could have elevated consequences for native communities. The per capita impacts of Orconectes (a snail predator) on native snails were substantially greater than those of Bellamya (a snail competitor). Crayfish predation also had a cascading effect by reducing native snail biomass, leading to increased periphyton growth. Bellamya, in contrast, reduced periphyton biomass, likely causing a reduction in growth by native lymnaeid snails. Bellamya also increased water column N:P ratio, possibly because of a low P excretion rate relative to native snail species. Together, these findings highlight the importance of understanding interactions among invasive species, which can have significant community- and ecosystem-level effects.


Asunto(s)
Astacoidea/fisiología , Ecosistema , Agua Dulce , Caracoles/fisiología , Animales , Clorofila/metabolismo , Clorofila A , Eucariontes/metabolismo
15.
Ecology ; 88(11): 2793-802, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18051648

RESUMEN

Ecologists use stable isotopes (delta13C, delta15N) to better understand food webs and explore trophic interactions in ecosystems. Traditionally, delta13C vs. delta15N bi-plots have been used to describe food web structure for a single time period or ecosystem. Comparisons of food webs across time and space are increasing, but development of statistical approaches for testing hypotheses regarding food web change has lagged behind. Here we present statistical methodologies for quantitatively comparing stable isotope food web data. We demonstrate the utility of circular statistics and hypothesis tests for quantifying directional food web differences using two case studies: an arthropod salt marsh community across a habitat gradient and a freshwater fish community from Lake Tahoe, USA, over a 120-year time period. We calculated magnitude and mean angle of change (theta) for each species in food web space using mean delta13C and delta15N of each species as the x, y coordinates. In the coastal salt marsh, arthropod consumers exhibited a significant shift toward dependence on Spartina, progressing from a habitat invaded by Phragmites to a restored Spartina habitat. In Lake Tahoe, we found that all species from the freshwater fish community shifted in the same direction in food web space toward more pelagic-based production with the introduction of nonnative Mysis relicta and onset of cultural eutrophication. Using circular statistics to quantitatively analyze stable isotope food web data, we were able to gain significant insight into patterns and changes in food web structure that were not evident from qualitative comparisons. As more ecologists incorporate a food web perspective into ecosystem analysis, these statistical tools can provide a basis for quantifying directional food web differences from standard isotope data.


Asunto(s)
Artrópodos/crecimiento & desarrollo , Ecología/métodos , Peces/crecimiento & desarrollo , Cadena Alimentaria , Isótopos/análisis , Animales , Isótopos de Carbono , Ecosistema , Monitoreo del Ambiente/métodos , Agua Dulce , Isótopos de Nitrógeno , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...