Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Magn Reson Imaging ; 92: 150-160, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35753643

RESUMEN

PURPOSE: Magnetic resonance imaging (MRI) scanner-specific geometric distortions may contribute to scanner induced variability and decrease volumetric measurement precision for multi-site studies. The purpose of this study was to determine whether geometric distortion correction increases the precision of brain volumetric measurements in a multi-site multi-scanner study. METHODS: Geometric distortion variation was quantified over a one-year period at 10 sites using the distortion fields estimated from monthly 3D T1-weighted MRI geometrical phantom scans. The variability of volume and distance measurements were quantified using synthetic volumes and a standard quantitative MRI (qMRI) phantom. The effects of geometric distortion corrections on MRI derived volumetric measurements of the human brain were assessed in two subjects scanned on each of the 10 MRI scanners and in 150 subjects with cerebrovascaular disease (CVD) acquired across imaging sites. RESULTS: Geometric distortions were found to vary substantially between different MRI scanners but were relatively stable on each scanner over a one-year interval. Geometric distortions varied spatially, increasing in severity with distance from the magnet isocenter. In measurements made with the qMRI phantom, the geometric distortion correction decreased the standard deviation of volumetric assessments by 35% and distance measurements by 42%. The average coefficient of variance decreased by 16% in gray matter and white matter volume estimates in the two subjects scanned on the 10 MRI scanners. CONCLUSION: Geometric distortion correction using an up-to-date correction field is recommended to increase precision in volumetric measurements made from MRI images.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
2.
Phys Med Biol ; 63(3): 035010, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29372691

RESUMEN

BACKGROUND AND PURPOSE: Radiation necrosis remains an irreversible long-term side-effect following radiotherapy to the brain. The ability to predict areas that could ultimately develop into necrosis could lead to prevention and management of radiation necrosis. MATERIALS AND METHODS: Fischer 344 rats were irradiated using two platforms (micro-CT irradiator and x-Rad 225 IGRT) with radiation up to 30 Gy for the micro-CT and 40 Gy for the xRAD-224 to half the brain. Animals were subsequently imaged using a 9.4 T MRI scanner every 2-4 weeks for up to 28 weeks using a 7-echo gradient echo sequence. The apparent transverse relaxation constant ([Formula: see text]) was calculated and retrospectively analyzed. RESULTS: Animals irradiated with the low-dose rate micro-CT did not exhibit any symptoms or imaging changes associated with RN. Animals irradiated with the xRAD-225 exhibited imaging changes consistent with RN at week 24. Analysis of the [Formula: see text] coefficient within the lesion and hippocampus shows the potential for detection of RN up to 10 weeks prior to morphological changes. CONCLUSIONS: The ability to predict areas of RN and increases of [Formula: see text] within the hippocampus provides a method for long-term monitoring and prediction of RN.


Asunto(s)
Encéfalo/patología , Rayos gamma/efectos adversos , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Traumatismos por Radiación/etiología , Animales , Encéfalo/efectos de la radiación , Masculino , Necrosis , Traumatismos por Radiación/patología , Ratas , Ratas Endogámicas F344
3.
J Magn Reson Imaging ; 45(4): 1113-1124, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27527348

RESUMEN

PURPOSE: To implement and optimize a new approach for susceptibility-weighted image (SWI) generation from multi-echo multi-channel image data and compare its performance against optimized traditional SWI pipelines. MATERIALS AND METHODS: Five healthy volunteers were imaged at 7 Tesla. The inter-echo-variance (IEV) channel combination, which uses the variance of the local frequency shift at multiple echo times as a weighting factor during channel combination, was used to calculate multi-echo local phase shift maps. Linear phase masks were combined with the magnitude to generate IEV-SWI. The performance of the IEV-SWI pipeline was compared with that of two accepted SWI pipelines-channel combination followed by (i) Homodyne filtering (HPH-SWI) and (ii) unwrapping and high-pass filtering (SVD-SWI). The filtering steps of each pipeline were optimized. Contrast-to-noise ratio was used as the comparison metric. Qualitative assessment of artifact and vessel conspicuity was performed and processing time of pipelines was evaluated. RESULTS: The optimized IEV-SWI pipeline (σ = 7 mm) resulted in continuous vessel visibility throughout the brain. IEV-SWI had significantly higher contrast compared with HPH-SWI and SVD-SWI (P < 0.001, Friedman nonparametric test). Residual background fields and phase wraps in HPH-SWI and SVD-SWI corrupted the vessel signal and/or generated vessel-mimicking artifact. Optimized implementation of the IEV-SWI pipeline processed a six-echo 16-channel dataset in under 10 min. CONCLUSION: IEV-SWI benefits from channel-by-channel processing of phase data and results in high contrast images with an optimal balance between contrast and background noise removal, thereby presenting evidence of importance of the order in which postprocessing techniques are applied for multi-channel SWI generation. LEVEL OF EVIDENCE: 2 J. Magn. Reson. Imaging 2017;45:1113-1124.


Asunto(s)
Encéfalo/anatomía & histología , Imagen Eco-Planar/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valores de Referencia
4.
Radiology ; 272(3): 851-64, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24828000

RESUMEN

PURPOSE: To evaluate the potential of quantitative susceptibility (QS) and R2* mapping as surrogate biomarkers of clinically relevant, age-adjusted demyelination and iron deposition in multiple sclerosis (MS). MATERIALS AND METHODS: All study participants gave written informed consent, and the study was approved by the institutional review board. Quantitative maps of the magnetic resonance imaging susceptibility parameters (R2* and QS) were computed for 25 patients with either clinically isolated syndrome (CIS) or relapsing-remitting MS, as well as for 15 age- and sex-matched control subjects imaged at 7 T. The candidate MR imaging biomarkers were correlated with Extended Disability Status Scale (EDSS), time since CIS diagnosis, time since MS diagnosis, and age. RESULTS: QS maps aided identification of significant, voxel-level increases in iron deposition in subcortical gray matter (GM) of patients with MS compared with control subjects. These voxel-level increases were not observed on R2* maps. Region-of-interest analysis of mean R2* and QS in subcortical GM demonstrated that R2* (R ≥ 0.39, P < .01) and QS (R ≥ 0.44, P < .01) were strongly correlated with EDSS. In white matter (WM), the volume of total WM damage (defined by a z score of less than -2.0 criterion, indicating demyelination) on QS maps correlated significantly with EDSS (R = 0.46, P = .02). Voxelwise QS also supported a significant contribution of age to demyelination in patients with MS, suggesting that age-adjusted clinical scores may provide more robust measures of MS disease severity compared with non-age-adjusted scores. CONCLUSION: Using QS and R2* mapping, evidence of both significant increases in iron deposition in subcortical GM and myelin degeneration along the WM skeleton of patients with MS was identified. Both effects correlated strongly with EDSS.


Asunto(s)
Encéfalo/patología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/patología , Fibras Nerviosas Mielínicas/patología , Neuronas/patología , Adulto , Biomarcadores/metabolismo , Encéfalo/metabolismo , Femenino , Humanos , Hierro/metabolismo , Masculino , Esclerosis Múltiple/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Neuronas/metabolismo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...