Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37762447

RESUMEN

To move from cell to cell through plasmodesmata, many plant viruses require the concerted action of two or more movement proteins (MPs) encoded by transport gene modules of virus genomes. A tetra-cistron movement block (TCMB) is a newly discovered transport module comprising four genes. TCMB encodes three proteins, which are similar to MPs of the transport module known as the "triple gene block", and a protein unrelated to known viral MPs and containing a double-stranded RNA (dsRNA)-binding domain similar to that found in a family of cell proteins, including AtDRB4 and AtHYL1. Here, the latter TCMB protein, named vDRB for virus dsRNA-binding protein, is shown to bind both dsRNA and single-stranded RNA in vitro. In a turnip crinkle virus-based assay, vDRB exhibits the properties of a viral suppressor of RNA silencing (VSR). In the context of potato virus X infection, vDRB significantly decreases the number and size of "dark green islands", regions of local antiviral silencing, supporting the VSR function of vDRB. Nevertheless, vDRB does not exhibit the VSR properties in non-viral transient expression assays. Taken together, the data presented here indicate that vDRB is an RNA-binding protein exhibiting VSR functions in the context of viral infection.

2.
Int J Mol Sci ; 24(10)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37240394

RESUMEN

One of the systems of plant defense against viral infection is RNA silencing, or RNA interference (RNAi), in which small RNAs derived from viral genomic RNAs and/or mRNAs serve as guides to target an Argonaute nuclease (AGO) to virus-specific RNAs. Complementary base pairing between the small interfering RNA incorporated into the AGO-based protein complex and viral RNA results in the target cleavage or translational repression. As a counter-defensive strategy, viruses have evolved to acquire viral silencing suppressors (VSRs) to inhibit the host plant RNAi pathway. Plant virus VSR proteins use multiple mechanisms to inhibit silencing. VSRs are often multifunctional proteins that perform additional functions in the virus infection cycle, particularly, cell-to-cell movement, genome encapsidation, or replication. This paper summarizes the available data on the proteins with dual VSR/movement protein activity used by plant viruses of nine orders to override the protective silencing response and reviews the different molecular mechanisms employed by these proteins to suppress RNAi.


Asunto(s)
Virus de Plantas , Virus ARN , Interferencia de ARN , Proteínas de Movimiento Viral en Plantas/genética , ARN Interferente Pequeño/genética , Virus ARN/genética , ARN Viral/genética , Plantas/genética , Virus de Plantas/genética
3.
Stem Cell Res Ther ; 14(1): 81, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37046354

RESUMEN

BACKGROUND: There is an urgent clinical need for targeted strategies aimed at the treatment of bone defects resulting from fractures, infections or tumors. 3D scaffolds represent an alternative to allogeneic MSC transplantation, due to their mimicry of the cell niche and the preservation of tissue structure. The actual structure of the scaffold itself can affect both effective cell adhesion and its osteoinductive properties. Currently, the effects of the structural heterogeneity of scaffolds on the behavior of cells and tissues at the site of damage have not been extensively studied. METHODS: Both homogeneous and heterogeneous scaffolds were generated from poly(L-lactic acid) methacrylated in supercritical carbon dioxide medium and were fabricated by two-photon polymerization. The homogeneous scaffolds consist of three layers of cylinders of the same diameter, whereas the heterogeneous (gradient pore sizes) scaffolds contain the middle layer of cylinders of increased diameter, imitating the native structure of spongy bone. To evaluate the osteoinductive properties of both types of scaffold, we performed in vitro and in vivo experiments. Multiphoton microscopy with fluorescence lifetime imaging microscopy was used for determining the metabolic states of MSCs, as a sensitive marker of cell differentiation. The results obtained from this approach were verified using standard markers of osteogenic differentiation and based on data from morphological analysis. RESULTS: The heterogeneous scaffolds showed improved osteoinductive properties, accelerated the metabolic rearrangements associated with osteogenic differentiation, and enhanced the efficiency of bone tissue recovery, thereby providing for both the development of appropriate morphology and mineralization. CONCLUSIONS: The authors suggest that the heterogeneous tissue constructs are a promising tool for the restoration of bone defects. And, furthermore, that our results demonstrate that the use of label-free bioimaging methods can be considered as an effective approach for intravital assessment of the efficiency of differentiation of MSCs on scaffolds.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Andamios del Tejido/química , Células Madre Mesenquimatosas/metabolismo , Ingeniería de Tejidos/métodos , Diferenciación Celular , Células Madre , Células Cultivadas
4.
Viruses ; 14(12)2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36560746

RESUMEN

Movement proteins (MPs) of plant viruses enable the translocation of viral genomes from infected to healthy cells through plasmodesmata (PD). The MPs functions involve the increase of the PD permeability and routing of viral genome both to the PD entrance and through the modified PD. Hibiscus green spot virus encodes two MPs, termed BMB1 and BMB2, which act in concert to accomplish virus cell-to-cell transport. BMB1, representing an NTPase/helicase domain-containing RNA-binding protein, localizes to the cytoplasm and the nucleoplasm. BMB2 is a small hydrophobic protein that interacts with the endoplasmic reticulum (ER) membranes and induces local constrictions of the ER tubules. In plant cells, BMB2 localizes to PD-associated membrane bodies (PAMBs) consisting of modified ER tubules and directs BMB1 to PAMBs. Here, we demonstrate that BMB1 and BMB2 interact in vitro and in vivo, and that their specific interaction is essential for BMB2-directed targeting of BMB1 to PAMBs. Using mutagenesis, we show that the interaction involves the C-terminal BMB1 region and the N-terminal region of BMB2.


Asunto(s)
Hibiscus , Virus de Plantas , Virus ARN , Hibiscus/metabolismo , Virus de Plantas/genética , Virus de Plantas/metabolismo , Retículo Endoplásmico , Virus ARN/metabolismo , Proteínas de Movimiento Viral en Plantas/genética , Proteínas de Movimiento Viral en Plantas/metabolismo , Nicotiana , Plasmodesmos
5.
Molecules ; 27(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36296390

RESUMEN

The influence of chitosan (CS) and amphiphilic polymers (AP: pluronic F108 and polyvinylpyrrolidone (PVP)) on the photocatalytic activity of rose bengal (RB) in a model reaction of tryptophan photo-oxidation in phosphate-buffered saline (PBS) was studied. It was shown that in the presence of CS, the effective rate constant keff of tryptophan photo-oxidation catalyzed by RB in PBS solution decreases by a factor of two. This is due to the ionic interaction of the RB with the chitosan. Rose bengal in a slightly acidic environment (pH 4.5) passes into a neutral lactone form, which sharply reduces the photosensitizing properties of the dye. It was demonstrated that the introduction of AP into a solution containing RB and CS prevents direct interaction between RB and CS. This is evidenced by the presence of photocatalytic activity of the dye in the RB-AP-CS systems, as well as bathochromic shifts of the main absorption bands of the dye, and an increase in the optical density and luminescence intensity of the RB when AP is introduced into a buffer solution containing RB and chitosan. The presence of RB-CS and RB-AP interaction in aqueous and PBS media is confirmed by the increase in the degree of fluorescence anisotropy (r) of these binary systems. In an aqueous solution, the value of r for the RB-F108-CS system decreases by a factor of 3.5 (compared to the value of r for the RB-CS system), which is associated with the localization of the dye in pluronic micelles. In PBS, the fluorescence anisotropy is practically the same for all systems, which is related to the stability of the dye structure in this medium. The presence of interaction between RB and AP in aqueous solutions was confirmed by the proton NMR method. In addition, the formation of RB-F108 macromolecular complexes, which form associates during solution concentration (in particular, during evaporation), was shown by AFM. Such RB-AP-CS systems may be promising for practical application in the treatment of local foci of infections by aPDT.


Asunto(s)
Quitosano , Rosa Bengala , Poloxámero , Polímeros , Micelas , Povidona , Triptófano , Protones , Lactonas , Fosfatos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química
6.
Gels ; 8(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36286117

RESUMEN

Luminescent aerogels based on sodium alginate cross-linked with ions of rare earth elements (Eu3+, Tb3+, Sm3+) and containing phenanthroline, thenoyltrifluoroacetone, dibenzoylmethane, and acetylacetone as ligands introduced into the matrix during the impregnation of alginate aerogels (AEG), were obtained for the first time in a supercritical carbon dioxide medium. The impregnation method used made it possible to introduce organically soluble sensitizing ligands into polysaccharide matrices over the entire thickness of the sample while maintaining the porous structure of the aerogel. It is shown that the pore size and their specific area are 150 nm and 270 m2/g, respectively. Moreover, metal ions with content of about 23 wt.%, acting as cross-linking agents, are uniformly distributed over the thickness of the sample. In addition, the effect of sensitizing ligands on the luminescence intensity of cross-linked aerogel matrices is considered. The interaction in the resulting metal/ligand systems is unique for each pair, which is confirmed by the detection of broad bands with individual positions in the luminescence excitation spectra of photoactive aerogels.

7.
Plants (Basel) ; 11(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36145804

RESUMEN

Plant viruses exploit the endomembrane system of infected cells for their replication and cell-to-cell transport. The replication of viral RNA genomes occurs in the cytoplasm in association with reorganized endomembrane compartments induced by virus-encoded proteins and is coupled with the virus intercellular transport via plasmodesmata that connect neighboring cells in plant tissues. The transport of virus genomes to and through plasmodesmata requires virus-encoded movement proteins (MPs). Distantly related plant viruses encode different MP sets, or virus transport systems, which vary in the number of MPs and their properties, suggesting their functional differences. Here, we discuss two distinct virus transport pathways based on either the modification of the endoplasmic reticulum tubules or the formation of motile vesicles detached from the endoplasmic reticulum and targeted to endosomes. The viruses with the movement proteins encoded by the triple gene block exemplify the first, and the potyviral system is the example of the second type. These transport systems use unrelated mechanisms of endomembrane reorganization. We emphasize that the mode of virus interaction with cell endomembranes determines the mechanism of plant virus cell-to-cell transport.

8.
Stem Cell Res Ther ; 13(1): 317, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842689

RESUMEN

One of the severe complications occurring because of the patient's intubation is tracheal stenosis. Its incidence has significantly risen because of the COVID-19 pandemic and tends only to increase. Here, we propose an alternative to the donor trachea and synthetic prostheses-the tracheal equivalent. To form it, we applied the donor trachea samples, which were decellularized, cross-linked, and treated with laser to make wells on their surface, and inoculated them with human gingiva-derived mesenchymal stromal cells. The fabricated construct was assessed in vivo using nude (immunodeficient), immunosuppressed, and normal mice and rabbits. In comparison with the matrix ones, the tracheal equivalent samples demonstrated the thinning of the capsule, the significant vessel ingrowth into surrounding tissues, and the increase in the submucosa resorption. The developed construct was shown to be highly biocompatible and efficient in trachea restoration. These results can facilitate its clinical translation and be a base to design clinical trials.


Asunto(s)
COVID-19 , Ingeniería de Tejidos , Animales , Humanos , Rayos Láser , Ratones , Pandemias , Conejos , Ingeniería de Tejidos/métodos , Andamios del Tejido , Tráquea
9.
ACS Omega ; 7(1): 959-967, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35036759

RESUMEN

Pyridoxal 5'-phosphate-dependent methionine γ-lyase from Citrobacter freundii (MGL, EC 4.4.1.11) is studied as an antitumor enzyme and in combination with substrates as an antibacterial agent in enzyme pro-drug therapy. For the possibility of in vivo trials, two mutant forms, C115H MGL and V358Y MGL, were encapsulated into polyionic vesicles (PICsomes). Five pairs of polymers with the number of polymer chain units 20, 50, 70, 120, and 160 were synthesized. The effect of polymer length-PEGylated poly-l-aspartic acid and poly-l-lysine-on the degree of MGL incorporation into PICsomes and their size was investigated. Encapsulation of proteins in PICsomes is a rather new technique. Our data demonstrated that the length of the polymers and, therefore, the ratio of the hydrophobic and hydrophilic fragments most likely should be selected individually for each protein to be encapsulated. The efficiency of encapsulation of MGL mutant forms into PICsomes was up to 11%. The hydrodynamic diameter and surface potential of hollow and MGL-loaded PICsomes were evaluated by the dynamic light scattering method. The size and morphology of the PICsomes were determined by atomic force microscopy. The most acceptable for further in vivo studies were PICsomes20 with a size of 57-64 nm, PICsomes70 of 50-90 nm, and PICsomes120 of 100-105 nm. The analysis of the steady-state parameters has demonstrated that both mutant forms retained their catalytic properties inside the nanoparticles. The release study of the enzymes from PICsomes revealed that about 50% of the enzymes remained encapsulated in PICsomes70 and PICsomes120 after 24 h. Based on the data obtained, the most promising for in vivo studies are PICsomes70 and PICsomes120.

10.
Polymers (Basel) ; 13(19)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34641200

RESUMEN

A hydrophobic derivative of ciprofloxacin, hexanoylated ciprofloxacin (CPF-hex), has been used as a photoinitiator (PI) for two-photon polymerization (2PP) for the first time. We present, here, the synthesis of CPF-hex and its application for 2PP of methacrylate-terminated star-shaped poly (D,L-lactide), as well a systematic study on the optical, physicochemical and mechanical properties of the photocurable resin and prepared three-dimensional scaffolds. CPF-hex exhibited good solubility in the photocurable resin, high absorption at the two-photon wavelength and a low fluorescence quantum yield = 0.079. Structuring tests showed a relatively broad processing window and revealed the efficiency of CPF-hex as a 2PP PI. The prepared three-dimensional scaffolds showed good thermal stability; thermal decomposition was observed only at 314 °C. In addition, they demonstrated an increase in Young's modulus after the UV post-curing (from 336 ± 79 MPa to 564 ± 183 MPa, which is close to those of a cancellous (trabecular) bone). Moreover, using CPF-hex as a 2PP PI did not compromise the scaffolds' low cytotoxicity, thus they are suitable for potential application in bone tissue regeneration.

11.
Langmuir ; 37(38): 11386-11396, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34533951

RESUMEN

Application of poly-N-isopropylacrylamide (PNIPAM) and its more hydrophobic copolymers with N-tert-butylacrylamide (NtBA) as supports for cell sheets has been validated in numerous studies. The binary systems of these polymers with water are characterized by a lower critical solution temperature (LCST) in a physiologically favorable region. Upon lowering the temperature below the LCST, PNIPAM chains undergo a globule-to-coil transition, causing the film dissolution and cell sheet detachment. The character of the PNIPAM-water miscibility behavior is rather complex and not completely understood. Here, we applied atomic force microscopy to track the phase transition in thin films of linear thermoresponsive (co)polymers (PNIPAM and PNIPAM-co-NtBA) prepared by spin-coating. We studied the films' Young's modulus, roughness, and thickness in air and in distilled water in a full thermal cycle. In dry films, in the absence of water, all the measured parameters remained invariant. The swollen films in water above the LCST were softer by 2-3 orders of magnitude and about 10 times rougher than the corresponding dry films. Upon lowering the temperature to the LCST, the films passed through the phase transition observed as a drastic drop of Young's modulus (about an order of magnitude) and decrease in roughness in both polymers in a narrow temperature range. However, the films did not lose their integrity and demonstrated almost fully reversible changes in the mechanical properties and roughness. The thermal dependence of the films' thickness confirmed that they dissolved only partially and required an external force to induce the complete destruction. The reversible thermal behavior which is generally not expected from non-cross-linked polymers is a key finding, especially with respect to their practical application in cell culture. Both the thermodynamic and kinetic factors, as well as the confinement effect, may be responsible for this peculiar film robustness, which requires overcooling and the aid of an external force to destroy the film.


Asunto(s)
Técnicas de Cultivo de Célula , Polímeros , Microscopía de Fuerza Atómica , Transición de Fase , Temperatura
12.
Diagnostics (Basel) ; 11(9)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34573958

RESUMEN

Radiation therapy is one of the cardinal approaches in the treatment of malignant tumors of the pelvis. It leads to the development of radiation-induced complications in the normal tissues. Thus, the evaluation of radiation-induced changes in the extracellular matrix of the normal tissue is deemed urgent, since connective tissue stroma degradation plays a crucial role in the development of Grade 3-4 adverse effects (hemorrhage, necrosis, and fistula). Such adverse effects not only drastically reduce the patients' quality of life but can also become life-threatening. The aim of this study is to quantitatively analyze the bladder collagen state in patients who underwent radiation therapy for cervical and endometrial cancer and in patients with chronic bacterial cystitis and compare them to the normal bladder extracellular matrix. MATERIALS AND METHODS: One hundred and five patients with Grade 2-4 of radiation cystitis, 67 patients with bacterial chronic cystitis, and 20 volunteers without bladder pathology were enrolled. Collagen changes were evaluated depending on its hierarchical level: fibrils and fibers level by atomic force microscopy; fibers and bundles level by two-photon microscopy in the second harmonic generation (SHG) mode; general collagen architectonics by cross-polarization optical coherence tomography (CP OCT). RESULTS: The main sign of the radiation-induced damage of collagen fibrils and fibers was the loss of the ordered "basket-weave" packing and a significant increase in the total area of ruptures deeper than 1 µm compared to the intact sample. The numerical analysis of SHG images detected that a decrease in the SHG signal intensity of collagen is correlated with the increase in the grade of radiation cystitis. The OCT signal brightness in cross-polarization images demonstrated a gradual decrease compared to the intact bladder depending on the grade of the adverse event. CONCLUSIONS: The observed correspondence between the extracellular matrix changes at the microscopic level and at the level of the general organ architectonics allows for the consideration of CP OCT as a method of "optical biopsy" in the grading of radiation-induced collagen damage.

13.
Cells ; 10(7)2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34359899

RESUMEN

The lack of an appropriate platform for a better understanding of the molecular basis of hepatitis viruses and the absence of reliable models to identify novel therapeutic agents for a targeted treatment are the two major obstacles for launching efficient clinical protocols in different types of viral hepatitis. Viruses are obligate intracellular parasites, and the development of model systems for efficient viral replication is necessary for basic and applied studies. Viral hepatitis is a major health issue and a leading cause of morbidity and mortality. Despite the extensive efforts that have been made on fundamental and translational research, traditional models are not effective in representing this viral infection in a laboratory. In this review, we discuss in vitro cell-based models and in vivo animal models, with their strengths and weaknesses. In addition, the most important findings that have been retrieved from each model are described.


Asunto(s)
Células/virología , Hígado/virología , Modelos Biológicos , Tropismo Viral/fisiología , Virosis/patología , Animales , Hidrodinámica , Hígado/patología
14.
Pharmaceutics ; 13(6)2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34198733

RESUMEN

Lysosomal proteases play a crucial role in maintaining cell homeostasis. Human cathepsin D manages protein turnover degrading misfolded and aggregated proteins and favors apoptosis in the case of proteostasis disruption. However, when cathepsin D regulation is affected, it can contribute to numerous disorders. The down-regulation of human cathepsin D is associated with neurodegenerative disorders, such as neuronal ceroid lipofuscinosis. On the other hand, its excessive levels outside lysosomes and the cell membrane lead to tumor growth, migration, invasion and angiogenesis. Therefore, targeting cathepsin D could provide significant diagnostic benefits and new avenues of therapy. Herein, we provide a brief overview of cathepsin D structure, regulation, function, and its role in the progression of many diseases and the therapeutic potentialities of natural and synthetic inhibitors and activators of this protease.

15.
Polymers (Basel) ; 13(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33805853

RESUMEN

In this work, we studied the photocatalytic activity of photosensitizers (PSs) of various natures solubilized with polyvinylpyrrolidone (PVP) and ternary block copolymer ethylene and propylene oxide Pluronic F127 (F127) in a model reaction of tryptophan photo-oxidation in water in the presence of chitosan (CT). Water-soluble compounds (dimegin and trisodium salt of chlorin e6 (Ce6)) and hydrophobic porphyrins (tetraphenylporphyrin (TPP) and its fluorine derivative (TPPF20)) were used as PSs. It was shown that the use of chitosan (Mw ~100 kDa) makes it possible to obtain a system whose activity is comparable to that of the photosensitizer-amphiphilic polymer systems. Thus, the previously observed drop in the photosensitizing activity of PS in the presence of a polysaccharide and amphiphilic polymers (AP) was absent in this case. At the same time, chitosan had practically no inhibitory effect on hydrophobic porphyrins solubilized by Pluronic F127.

16.
Polymers (Basel) ; 12(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138125

RESUMEN

A two-stage polylactide modification was performed in the supercritical carbon dioxide medium using the urethane formation reaction. The modification resulted in the synthesis of polymerizable methacrylate derivatives of polylactide for application in the spatial 3D structuring by laser stereolithography. The use of the supercritical carbon dioxide medium allowed us to obtain for the first time polymerizable oligomer-polymer systems in the form of dry powders convenient for further application in the preparation of polymer compositions for photocuring. The photocuring of the modified polymers was performed by laser stereolithography and two-photon crosslinking. Using nanoindentation, we found that Young's modulus of the cured compositions corresponded to the standard characteristics of implants applied in regenerative medicine. As shown by thermogravimetric analysis, the degree of crosslinking and, hence, the local stiffness of scaffolds were determined by the amount of the crosslinking agent and the photocuring regime. No cytotoxicity was observed for the structures.

17.
Int J Bioprint ; 6(3): 269, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33088984

RESUMEN

For the past 10 years, the main efforts of most bioprinting research teams have focused on creating new bioink formulations, rather than inventing new printing set-up concepts. New tissue-specific bioinks with good printability, shape fidelity, and biocompatibility are based on "old" (well-known) biomaterials, particularly fibrin. While the interest in fibrin-based bioinks is constantly growing, it is essential to provide a framework of material's properties and trends. This review aims to describe the fibrin properties and application in three-dimensional bioprinting and provide a view on further development of fibrin-based bioinks.

18.
Data Brief ; 28: 105083, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32226817

RESUMEN

The phloem sieve elements (SEs), enucleate cells, contain RNAs, which are imported from surrounding tissues and cells, mostly companion cells tightly associated with SEs, and transported via the phloem over the whole plant body. The RNA phloem transport is essential for plant individual development and responses to environmental cues. Recently, we identified primary miRNA (pri-miRNA) sequences in de novo assembled transcriptome of Cucurbita maxima phloem sap and reported 11 most abundant pri-miRNAs [1]. Here, we provide the output of this analysis in complete detail. For the full set of pri-miRNAs identified in the C. maxima phloem sap transcriptome, data on relative abundance are provided along with annotated sequence data.

19.
Nitric Oxide ; 83: 24-32, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30557618

RESUMEN

We have studied the effect of interactions between dinitrosyl iron complexes with thiol-containing ligands (DNIC-TL) and diglucamine salt of chlorine e6 (photoditazine, PD) on the rate of photosensitized oxidation of a model organic substrate - tryptophan - in the presence and absence of an amphiphilic polymer, Pluronic F127, as well as on the DNIC-TL and PD photostability. Using EPR and UV spectroscopy, we determined the rate constants for photodegradation of mono- and dinuclear DNIC-TL and PD, respectively. The presence of the photosensitizer and Pluronic F127 has been shown to have a negligible effect on the rate of photodestruction of mono- and dinuclear DNIC-TL, taking into account the changing DNIC-TL and PD concentrations in the photoexcitation conditions. At the same time, in the DNIC-TL presence, the rate of PD photodestruction increases, however, addition of Pluronic F127 leads to a decrease in the rate constant of PD photodestruction. The latter circumstance creates an opportunity for a simultaneous application of DNIC-TL and photodynamic therapy in the wound treatment without losing the PDT efficiency. Indeed, photodynamic therapy in combination with DNIC-TL facilitated skin wound healing in laboratory rats. As shown by a morphological study, application of the DNIC-TL-PD-F127 complex with the subsequent photoactivation was beneficial in reducing inflammation and stimulating regenerative processes.


Asunto(s)
Hierro/uso terapéutico , Óxidos de Nitrógeno/uso terapéutico , Fotoquimioterapia , Fármacos Fotosensibilizantes/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Animales , Glucosamina/análogos & derivados , Glucosamina/antagonistas & inhibidores , Glucosamina/farmacología , Hierro/química , Masculino , Estructura Molecular , Óxido Nítrico/metabolismo , Óxidos de Nitrógeno/química , Fármacos Fotosensibilizantes/química , Poloxámero/química , Poloxámero/farmacología , Ratas , Ratas Wistar , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología
20.
Sci Rep ; 8(1): 18057, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30568175

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...