Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(27): 32621-32628, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37368062

RESUMEN

Electron transport layers (ETL) based on tin(IV) oxide (SnO2) are recurrently employed in perovskite solar cells (PSCs) by many deposition techniques. Pulsed laser deposition (PLD) offers a few advantages for the fabrication of such layers, such as being compatible with large scale, patternable, and allowing deposition at fast rates. However, a precise understanding of how the deposition parameters can affect the SnO2 film, and as a consequence the solar cell performance, is needed. Herein, we use a PLD tool equipped with a droplet trap to minimize the number of excess particles (originated from debris) reaching the substrate, and we show how to control the PLD chamber pressure to obtain surfaces with very low roughness and how the concentration of oxygen in the background gas can affect the number of oxygen vacancies in the film. Using optimized deposition conditions, we obtained solar cells in the n-i-p configuration employing methylammonium lead iodide perovskite as the absorber layer with power conversion efficiencies exceeding 18% and identical performance to devices having the more typical atomic layer deposited SnO2 ETL.

2.
Ultrasonics ; 49(8): 605-10, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19545884

RESUMEN

We focus on a single cavitation bubble driven by ultrasound, a system which is a specimen of forced nonlinear oscillators and is characterized by its extreme sensitivity to the initial conditions. The driven radial oscillations of the bubble are considered to be implicated by the principles of chaos physics and owing to specific ranges of control parameters, can be periodic or chaotic. Despite the growing number of investigations on its dynamics, there is not yet an inclusive yardstick to sort the dynamical behavior of the bubble into classes; also, the response oscillations are so complex that long term prediction on the behavior becomes difficult to accomplish. In this study, the nonlinear dynamics of a bubble oscillator was treated numerically and the simulations were proceeded with bifurcation diagrams. The calculated bifurcation diagrams were compared in an attempt to classify the bubble dynamic characteristics when varying the control parameters. The comparison reveals distinctive bifurcation patterns as a consequence of driving the systems with unequal ratios of R(0)lambda (where R(0) is the bubble initial radius and lambda is the wavelength of the driving ultrasonic wave). Results indicated that systems having the equal ratio of R(0)lambda, share remarkable similarities in their bifurcating behavior and can be classified under a unit category.


Asunto(s)
Medios de Contraste/química , Medios de Contraste/efectos de la radiación , Gases/química , Gases/efectos de la radiación , Modelos Químicos , Sonicación , Ultrasonografía/métodos , Simulación por Computador
3.
Ultrason Sonochem ; 16(4): 502-11, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19201640

RESUMEN

Nonlinear dynamics of a spherical cavitation bubble was studied. A method based on applying a periodic perturbation to suppress chaotic oscillations is introduced. The relation between this method and dual frequency ultrasonic irradiation is correlated to prove its applicability in applications involving cavitation phenomena. Results indicated its strong impact on reducing the chaotic oscillations to regular ones. The governing parameters are the secondary frequency value and the phase difference between the secondary frequency and the fundamental one. In the end, the possible application of this method in high intensity focused ultrasound tumor ablation as an instance, is discussed accounting for both free bubbles and microbubbles.


Asunto(s)
Gases/química , Dinámicas no Lineales , Periodicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA