Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Science ; 385(6710): 711-712, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39146432

RESUMEN

Patterns of spontaneous neuronal activity instruct the refinement of developing brain circuits.


Asunto(s)
Encéfalo , Plasticidad Neuronal , Sinapsis , Animales , Sinapsis/fisiología , Encéfalo/citología , Encéfalo/fisiología , Encéfalo/crecimiento & desarrollo , Neuronas/fisiología , Neuronas/citología , Ratones
2.
eNeuro ; 11(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39160068

RESUMEN

Retinal ganglion cell (RGC) axons provide direct input into several brain regions, including the dorsal lateral geniculate nucleus (dLGN), which is important for image-forming vision, and the ventrolateral geniculate nucleus (vLGN), which is associated with nonimage-forming vision. Through both activity- and morphogen-dependent mechanisms, retinal inputs play important roles in the development of dLGN, including the refinement of retinal projections, morphological development of thalamocortical relay cells (TRCs), timing of corticogeniculate innervation, and recruitment and distribution of inhibitory interneurons. In contrast, little is known about the role of retinal inputs in the development of vLGN. Grossly, vLGN is divided into two domains, the retinorecipient external vLGN (vLGNe) and nonretinorecipient internal vLGN (vLGNi). Studies previously found that vLGNe consists of transcriptionally distinct GABAergic subtypes distributed into at least four adjacent laminae. At present, it remains unclear whether retinal inputs influence the development of these cell-type-specific neuronal laminae in vLGNe. Here, we elucidated the developmental timeline for these laminae in the mouse vLGNe, and results indicate that these laminae are specified at or before birth. We observed that mutant mice without retinal inputs have a normal laminar distribution of GABAergic cells at birth; however, after the first week of postnatal development, these mutants exhibited a dramatic disruption in the laminar organization of inhibitory neurons and clear boundaries between vLGNe and vLGNi. Overall, our results show that while the formation of cell-type-specific layers in mouse vLGNe does not depend on RGC inputs, retinal signals are critical for their maintenance.


Asunto(s)
Cuerpos Geniculados , Ratones Transgénicos , Vías Visuales , Animales , Cuerpos Geniculados/fisiología , Vías Visuales/fisiología , Vías Visuales/crecimiento & desarrollo , Retina/fisiología , Retina/crecimiento & desarrollo , Células Ganglionares de la Retina/fisiología , Ratones Endogámicos C57BL , Ratones , Factor de Transcripción Brn-3A/metabolismo , Factor de Transcripción Brn-3A/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Neuronas/fisiología
3.
bioRxiv ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38293194

RESUMEN

Retinal ganglion cell (RGC) axons provide direct input into several nuclei of the mouse visual thalamus, including the dorsal lateral geniculate nucleus (dLGN), which is important for classical image-forming vision, and the ventral lateral geniculate nucleus (vLGN), which is associated with non-image-forming vision. Through both activity- and morphogen-dependent mechanisms, retinal inputs play important roles in the development of dLGN, including the refinement of retinal projections, morphological development of thalamocortical relay cells (TRCs), the timing of corticogeniculate innervation, and the recruitment of inhibitory interneurons from progenitor zones. In contrast, little is known about the role of retinal inputs in the development of vLGN. Grossly, vLGN is divided into two domains, the retinorecipient external vLGN (vLGNe) and the non-retinorecipient internal vLGN (vLGNi). We previously found that vLGNe consists of transcriptionally distinct GABAergic subtypes that are distributed into at least four adjacent laminae. At present, it remains unclear whether retinal inputs influence the development of these cell-specific neuronal laminae in vLGNe. Here, we elucidated the developmental timeline for the formation and maintenance of these laminae in the mouse vLGNe and results indicate that these laminae are specified at or before birth, well before eye-opening and the emergence of experience-dependent visual activity. We observed that mutant mice without retinal inputs have a normal laminar distribution of GABAergic cells at birth; however, after the first week of postnatal development, these mutants exhibited a dramatic disruption in the laminar organization of inhibitory neurons and clear boundaries between vLGNe and vLGNi. Overall, our results show that while the formation of cell type-specific layers in vLGNe does not depend on RGC inputs, retinal signals are critical for their maintenance.

4.
Elife ; 112022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36342840

RESUMEN

Axons of retinal ganglion cells (RGCs) play critical roles in the development of inhibitory circuits in visual thalamus. We previously reported that RGC axons signal astrocytes to induce the expression of fibroblast growth factor 15 (FGF15), a motogen required for GABAergic interneuron migration into visual thalamus. However, how retinal axons induce thalamic astrocytes to generate Fgf15 and influence interneuron migration remains unknown. Here, we demonstrate that impairing RGC activity had little impact on interneuron recruitment into mouse visual thalamus. Instead, our data show that retinal-derived sonic hedgehog (SHH) is essential for interneuron recruitment. Specifically, we show that thalamus-projecting RGCs express SHH and thalamic astrocytes generate downstream components of SHH signaling. Deletion of RGC-derived SHH leads to a significant decrease in Fgf15 expression, as well as in the percentage of interneurons recruited into visual thalamus. Overall, our findings identify a morphogen-dependent neuron-astrocyte signaling mechanism essential for the migration of thalamic interneurons.


Asunto(s)
Proteínas Hedgehog , Interneuronas , Ratones , Animales , Proteínas Hedgehog/metabolismo , Interneuronas/fisiología , Tálamo/metabolismo , Axones/metabolismo , Células Ganglionares de la Retina/metabolismo
6.
Front Mol Neurosci ; 15: 852243, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35283725

RESUMEN

Background: Inflammation is a significant contributor to neuronal death and dysfunction following traumatic brain injury (TBI). Recent evidence suggests that interferons may be a key regulator of this response. Our studies evaluated the role of the Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes (cGAS-STING) signaling pathway in a murine model of TBI. Methods: Male, 8-week old wildtype, STING knockout (-/-), cGAS -/-, and NLRX1 -/- mice were subjected to controlled cortical impact (CCI) or sham injury. Histopathological evaluation of tissue damage was assessed using non-biased stereology, which was complemented by analysis at the mRNA and protein level using qPCR and western blot analysis, respectively. Results: We found that STING and Type I interferon-stimulated genes were upregulated after CCI injury in a bi-phasic manner and that loss of cGAS or STING conferred neuroprotection concomitant with a blunted inflammatory response at 24 h post-injury. cGAS -/- animals showed reduced motor deficits 4 days after injury (dpi), and amelioration of tissue damage was seen in both groups of mice up to 14 dpi. Given that cGAS requires a cytosolic damage- or pathogen-associated molecular pattern (DAMP/PAMP) to prompt downstream STING signaling, we further demonstrate that mitochondrial DNA is present in the cytosol after TBI as one possible trigger for this pathway. Recent reports suggest that the immune modulator NLR containing X1 (NLRX1) may sequester STING during viral infection. Our findings show that NLRX1 may be an additional regulator that functions upstream to regulate the cGAS-STING pathway in the brain. Conclusions: These findings suggest that the canonical cGAS-STING-mediated Type I interferon signaling axis is a critical component of neural tissue damage following TBI and that mtDNA may be a possible trigger in this response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA