Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 165: 107384, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37633085

RESUMEN

Gastric motility is coordinated by bioelectric slow waves (SWs) and dysrhythmic SW activity has been linked with motility disorders. Magnetogastrography (MGG) is the non-invasive measurement of the biomagnetic fields generated by SWs. Dysrhythmia identification using MGG is currently challenging because source models are not well developed and the impact of anatomical variation is not well understood. A novel method for the quantitative spatial co-registration of serosal SW potentials, MGG, and geometric models of anatomical structures was developed and performed on two anesthetized pigs to verify feasibility. Electrode arrays were localized using electromagnetic transmitting coils. Coil localization error for the volume where the stomach is normally located under the sensor array was assessed in a benchtop experiment, and mean error was 4.2±2.3mm and 3.6±3.3° for a coil orientation parallel to the sensor array and 6.2±5.7mm and 4.5±7.0° for a perpendicular coil orientation. Stomach geometries were reconstructed by fitting a generic stomach to up to 19 localization coils, and SW activation maps were mapped onto the reconstructed geometries using the registered positions of 128 electrodes. Normal proximal-to-distal and ectopic SW propagation patterns were recorded from the serosa and compared against the simultaneous MGG measurements. Correlations between the center-of-gravity of normalized MGG and the mean position of SW activity on the serosa were 0.36 and 0.85 for the ectopic and normal propagation patterns along the proximal-distal stomach axis, respectively. This study presents the first feasible method for the spatial co-registration of MGG, serosal SW measurements, and subject-specific anatomy. This is a significant advancement because these data enable the development and validation of novel non-invasive gastric source characterization methods.


Asunto(s)
Motilidad Gastrointestinal , Estómago , Animales , Porcinos , Motilidad Gastrointestinal/fisiología , Estómago/fisiología , Fenómenos Electrofisiológicos/fisiología , Electrodos , Abdomen
2.
Am J Physiol Gastrointest Liver Physiol ; 323(6): G562-G570, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36255075

RESUMEN

Chronic nausea is a widespread functional disease in children with numerous comorbidities. High-resolution electrogastrogram (HR-EGG) has shown sufficient sensitivity as a noninvasive clinical marker to objectively detect distinct gastric slow wave properties in children with functional nausea. We hypothesized that the increased precision of magnetogastrogram (MGG) slow wave recordings could provide supplementary information not evident on HR-EGG. We evaluated simultaneous pre- and postprandial MGG and HR-EGG recordings in pediatric patients with chronic nausea and healthy asymptomatic subjects, while also measuring nausea intensity and nausea severity. We found significant reductions in postprandial dominant frequency and normogastric power, and higher levels of postprandial bradygastric power in patients with nausea in both MGG and HR-EGG. MGG also detected significantly lower preprandial normogastric power in patients. A significant difference in the mean preprandial gastric slow wave propagation direction was observed in patients as compared with controls in both MGG (control: 180 ± 61°, patient: 34 ±72°; P < 0.05) and HR-EGG (control: 240 ± 39°, patient: 180 ± 46°; P < 0.05). Patients also showed a significant change in the mean slow wave direction between pre- and postprandial periods in MGG (P < 0.05). No statistical differences were observed in propagation speed between healthy subjects and patients in either MGG or HR-EGG pre/postprandial periods. The use of MGG and/or HR-EGG represents an opportunity to assess noninvasively the effects of chronic nausea on gastric slow wave activity. MGG data may offer the opportunity for further refinement of the more portable and economical HR-EGG in future machine-learning approaches for functional nausea.NEW & NOTEWORTHY Pediatric chronic nausea is a difficult-to-measure subjective complaint that requires objective diagnosis, clinical assessment, and individualized treatment plans. Our study demonstrates that multichannel MGG used in conjunction with custom HR-EGG detects key pathological signatures of functional nausea in children. This quantifiable measure may allow more personalized diagnosis and treatment in addition to minimizing the cost and potential radiation associated with current diagnostic approaches.


Asunto(s)
Motilidad Gastrointestinal , Estómago , Humanos , Niño , Periodo Posprandial , Biomarcadores , Náusea/diagnóstico
3.
IEEE Trans Biomed Eng ; 69(5): 1717-1725, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34793297

RESUMEN

OBJECTIVE: Pediatric functional nausea is challenging for patients to manage and for clinicians to treat since it lacks objective diagnosis and assessment. A data-driven non-invasive diagnostic screening tool that distinguishes the electro-pathophysiology of pediatric functional nausea from healthy controls would be an invaluable aid to support clinical decision-making in diagnosis and management of patient treatment methodology. The purpose of this paper is to present an innovative approach for objectively classifying pediatric functional nausea using cutaneous high-resolution electrogastrogram data. METHODS: We present an Automated Electrogastrogram Data Analytics Pipeline framework and demonstrate its use in a 3x8 factorial design to identify an optimal classification model according to a defined objective function. Low-fidelity synthetic high-resolution electrogastrogram data were generated to validate outputs and determine SOBI-ICA noise reduction effectiveness. RESULTS: A 10 parameter support vector machine binary classifier with a radial basis function kernel was selected as the overall top-performing model from a pool of over 1000 alternatives via maximization of an objective function. This resulted in a 91.6% test ROC AUC score. CONCLUSION: Using an automated machine learning pipeline approach to process high-resolution electrogastrogram data allows for clinically significant objective classification of pediatric functional nausea. SIGNIFICANCE: To our knowledge, this is the first study to demonstrate clinically significant performance in the objective classification of pediatric nausea patients from healthy control subjects using experimental high-resolution electrogastrogram data. These results indicate a promising potential for high-resolution electrogastrography to serve as a data-driven screening tool for the objective diagnosis of pediatric functional nausea.


Asunto(s)
Aprendizaje Automático , Máquina de Vectores de Soporte , Niño , Electromiografía , Humanos , Náusea/diagnóstico
5.
Neurogastroenterol Motil ; 33(5): e14035, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33217123

RESUMEN

BACKGROUND: Chronic nausea in adolescents with functional gastrointestinal disorders is an increasingly reported but poorly understood symptom that negatively affects quality of life. Functional gastrointestinal disorders are known to correlate closely with slow wave rhythm disturbances. The ability to characterize gastric electrophysiologic perturbations in functional nausea patients could provide potential diagnostic and therapeutic tools for nausea patients. METHODS: We used high-resolution electrogastrograms (HR-EGG) to measure gastric slow wave parameters in pediatric chronic nausea patients and healthy subjects both pre- and postprandial. We computed the dominant frequency, percentage power distribution, gastric slow wave propagation direction, and speed from HR-EGG. KEY RESULTS: We observed significant differences in the dominant frequency and power distributed in normal and bradyarrhythmia frequency ranges when comparing patients and healthy subjects. Propagation patterns in healthy subjects were predominantly anterograde, while patients exhibited a variety of abnormalities including retrograde, anterograde, and disrupted patterns. There was a significant difference in the preprandial mean slow wave direction between healthy subjects (222° ± 22°) and patients (103° ± 66°; p Ë‚ 0.01), although the postprandial mean direction between healthy subjects and patients was similar (p = 0.73). No significant difference in slow wave propagation speed was found between patients and healthy subjects in either pre- (p = 0.21) or postprandial periods (p = 0.75). CONCLUSIONS AND INFERENCES: The spatiotemporal characterization of gastric slow wave activity using HR-EGG distinguishes symptomatic chronic nausea patients from healthy subjects. This characterization may in turn inform and direct clinical decision-making and lead to further insight into its pathophysiology.


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Motilidad Gastrointestinal/fisiología , Náusea/fisiopatología , Estómago/fisiopatología , Adolescente , Estudios de Casos y Controles , Niño , Enfermedad Crónica , Electrodiagnóstico , Femenino , Humanos , Masculino , Periodo Posprandial
6.
J Surg Res ; 239: 31-37, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30782544

RESUMEN

BACKGROUND: Acute mesenteric ischemia represents a life-threatening gastrointestinal condition. A noninvasive diagnostic modality that identifies mesenteric ischemia patients early in the disease process will enable early surgical intervention. Previous studies have identified significant changes in the small-bowel electrical slow-wave parameters during intestinal ischemia caused by total occlusion of the superior mesenteric artery. The purpose of this study was to use noninvasive biomagnetic techniques to assess functional physiological changes in intestinal slow waves in response to partial mesenteric ischemia. METHODS: We induced progressive intestinal ischemia in normal porcine subjects (n = 10) by slowly increasing the occlusion of the superior mesenteric artery at the following percentages of baseline flow: 50%, 75%, 90%, and 100% while simultaneous transabdominal magnetoenterogram (MENG) and serosal electromyogram (EMG) recordings were being obtained. RESULTS: A statistically significant serosal EMG amplitude decrease was observed at 100% occlusion compared with baseline, whereas no significant change was observed for MENG amplitude at any progressive occlusion levels. MENG recordings showed significant changes in the frequency and percentage of power distributed in bradyenteric and normoenteric frequency ranges at 50%, 75%, 90%, and 100% vessel occlusions. In serosal EMG recordings, a similar percent power distribution (PPD) effect was observed at 75%, 90%, and 100% occlusion levels. Serosal EMG showed a statistically significant increase in tachyenteric PPD at 90% and 100% occlusion. We observed significant increase in tachyenteric PPD only at the 100% occlusion level in MENG recordings. CONCLUSIONS: Ischemic changes in the intestinal slow wave can be detected early and noninvasively even with partial vascular occlusion. Our results suggest that noninvasive MENG may be useful for clinical diagnosis of partial mesenteric ischemia.


Asunto(s)
Electrodiagnóstico/métodos , Intestino Delgado/fisiopatología , Magnetometría/métodos , Isquemia Mesentérica/diagnóstico , Animales , Modelos Animales de Enfermedad , Electrodos , Electrodiagnóstico/instrumentación , Fenómenos Electrofisiológicos/fisiología , Femenino , Humanos , Intestino Delgado/irrigación sanguínea , Magnetometría/instrumentación , Masculino , Arteria Mesentérica Superior/cirugía , Isquemia Mesentérica/etiología , Isquemia Mesentérica/fisiopatología , Porcinos
7.
IEEE Trans Biomed Eng ; 66(2): 327-334, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29993499

RESUMEN

OBJECTIVE: The prokinetic action of erythromycin is clinically useful under conditions associated with gastrointestinal hypomotility. Although erythromycin is known to affect the electrogastrogram, no studies have examined the effects that erythromycin has on gastric slow wave magnetic fields. METHODS: In this study, gastric slow wave activity was assessed simultaneously using noninvasive magnetogastrogram (MGG), electrogastrogram, and mucosal electromyogram recordings. Recordings were obtained for 30 min prior to and 60 min after intravenous administration of erythromycin at dosages of 3 and 6 mg/kg. RESULTS: MGG recordings showed significant changes in the percentage power distribution of gastric signal after infusion of both 3 and 6 mg/kg erythromycin at t = 1-5 min that persisted for t = 30-40 min after infusion. These changes agree with the changes observed in the electromyogram. We did not observe any statistically significant difference in MGG amplitude before or after injection of either 3 or 6 mg/kg erythromycin. Both 3 and 6 mg/kg erythromycin infusion showed retrograde propagation with a statistically significant decrease in slow wave propagation velocity 11-20 min after infusion. Propagation velocity started returning toward baseline values after approximately 21-30 min for the 3 mg/kg dosage and after 31-40 min for a dosage of 6 mg/kg. CONCLUSION: Our results showed that the magnetic signatures were sensitive to disruptions in normal slow wave activity induced by pharmacological and prokinetic agents such as erythromycin. SIGNIFICANCE: This study shows that repeatable noninvasive bio-electro-magnetic techniques can objectively characterize gastric dysrhythmias and may quantify treatment efficacy in patients with functional gastric disorders.


Asunto(s)
Electromiografía/métodos , Electrofisiología/métodos , Eritromicina/farmacología , Motilidad Gastrointestinal/efectos de los fármacos , Magnetometría/métodos , Adulto , Electromiografía/instrumentación , Electrofisiología/instrumentación , Femenino , Humanos , Magnetometría/instrumentación , Masculino , Procesamiento de Señales Asistido por Computador , Adulto Joven
8.
IEEE Trans Biomed Eng ; 63(8): 1751-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26595907

RESUMEN

OBJECTIVE: The propagation of electrophysiological activity measured by multichannel devices could have significant clinical implications. Gastric slow waves normally propagate along longitudinal paths that are evident in recordings of serosal potentials and transcutaneous magnetic fields. We employed a realistic model of gastric slow wave activity to simulate the transabdominal magnetogastrogram (MGG) recorded in a multichannel biomagnetometer and to determine characteristics of electrophysiological propagation from MGG measurements. METHODS: Using MGG simulations of slow wave sources in a realistic abdomen (both superficial and deep sources) and in a horizontally-layered volume conductor, we compared two analytic methods (second-order blind identification, SOBI and surface current density, SCD) that allow quantitative characterization of slow wave propagation. We also evaluated the performance of the methods with simulated experimental noise. The methods were also validated in an experimental animal model. RESULTS: Mean square errors in position estimates were within 2 cm of the correct position, and average propagation velocities within 2 mm/s of the actual velocities. SOBI propagation analysis outperformed the SCD method for dipoles in the superficial and horizontal layer models with and without additive noise. The SCD method gave better estimates for deep sources, but did not handle additive noise as well as SOBI. CONCLUSION: SOBI-MGG and SCD-MGG were used to quantify slow wave propagation in a realistic abdomen model of gastric electrical activity. SIGNIFICANCE: These methods could be generalized to any propagating electrophysiological activity detected by multichannel sensor arrays.


Asunto(s)
Electrofisiología/métodos , Motilidad Gastrointestinal/fisiología , Modelos Biológicos , Algoritmos , Animales , Fenómenos Electrofisiológicos/fisiología , Procesamiento de Señales Asistido por Computador , Estómago/fisiología , Porcinos
9.
IEEE Trans Biomed Eng ; 60(6): 1677-84, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23335661

RESUMEN

The slow wave activity was measured in the magnetoenterogram (MENG) of normal porcine subjects (N = 5) with segmental intestinal ischemia. The correlation changes in enteric slow wave activity were determined in MENG and serosal electromyograms (EMG). MENG recordings show significant changes in the frequency and power distribution of enteric slow-wave signals during segmental ischemia, and these changes agree with changes observed in the serosal EMG. There was a high degree of correlation between the frequency of the electrical activity recorded in MENG and in serosal EMG (r = 0.97). The percentage of power distributed in brady- and normoenteric frequency ranges exhibited significant segmental ischemic changes. Our results suggest that noninvasive MENG detects ischemic changes in isolated small bowel segments.


Asunto(s)
Electrodiagnóstico/métodos , Intestino Delgado/fisiología , Isquemia/diagnóstico , Magnetometría/métodos , Procesamiento de Señales Asistido por Computador , Animales , Electrodos , Motilidad Gastrointestinal/fisiología , Intestino Delgado/fisiopatología , Isquemia/fisiopatología , Porcinos
10.
Nanoscale ; 3(1): 184-7, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21042615

RESUMEN

In this communication, EuTe nanoparticles with different size distributions have been synthesized for the first time at room temperature by injection of ethylene glycol solution of Na2Te into ethylene glycol solution of EuCl2 in the presence of triethanolamine. By adding phenanthroline into EuCl2 solution, EuTe nanospindles have also been synthesized. The as-synthesized EuTe nanocrystals show size-dependent optical properties. Low-temperature magnetic measurements show that 6.5 nm EuTe nanoparticles show pronounced superantiferromagnetic transition between 2 K and 20 K. Our facile synthesis route opens up the opportunity of studying and applying this classical Heisenberg antiferromagnetic material in quantized-size range; our magnetic analysis indicates that the properties of EuTe can be tuned by the change of its diameter.


Asunto(s)
Magnetismo , Nanopartículas del Metal/química , Telurio/química , Glicol de Etileno/química , Europio/química , Nanopartículas del Metal/ultraestructura , Tamaño de la Partícula , Temperatura
11.
Nanotechnology ; 21(41): 415601, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20834117

RESUMEN

A novel one-step solvothermal synthesis of stable colloidal EuS nanocrystals (NCs) is reported. The EuS NCs were synthesized in oleylamine directly from europium oleate and diethylammonium diethyldithiocarbamate in the presence of dodecanethiol and phenanthroline. The formation of single crystalline monodisperse EuS NCs, with sizes finely controlled by synthetic conditions, was confirmed by x-ray diffraction and high resolution transmission electron microscopy analysis. The exciton transition of EuS NCs blue-shifts to higher energies with decreasing particle sizes, as revealed by optical absorption and photoluminescence measurements. The feasibility of synthesizing monocrystalline EuS nanorods by solvothermal synthesis was also demonstrated, making them potentially viable materials for device applications.

12.
J Phys Chem B ; 112(1): 23-8, 2008 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-18069811

RESUMEN

The controlled electrophoretic deposition of polystyrene/divinylbenzene (PS/DVB) star polymer films from a colloidal suspension is reported. Liquid suspensions, containing the PS/DVB star polymer, were prepared by injecting a dichloromethane (DCM) solution of the star polymer into a stratified liquid combination of hexane and DCM. A variety of hexane/DCM volume ratios were examined to identify the optimal solution conditions for electrophoretic deposition; thin films were produced from both unmixed and well-mixed hexane/DCM suspensions. Unmixed suspensions yielded spatially separated thin films, deposited in a controlled fashion, that were dependent on the polarity of the corresponding electrode. Films on the positive electrode differed in thickness, microstructure, and appearance from those formed on the negative electrode. In contrast, films produced from well-mixed hexane/DCM suspensions deposited uniformly across only the negative electrode. Atomic force microscopy studies revealed nanostructured surface morphologies that were unique to each of these films. Additionally, these microscopy studies shed light on the possible conformations of star polymers adsorbed on a surface. By controlling the composition and the mixing state of the solution and by controlling the bias of electrodes, we achieved controlled deposition of star polymer films with a specific nanostructure. These nanostructured films may have broad use in optical and biological device applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...