Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 18(6): 1173-82, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20332767

RESUMEN

Gene therapy for cystic fibrosis (CF) is making encouraging progress into clinical trials. However, further improvements in transduction efficiency are desired. To develop a novel gene transfer vector that is improved and truly effective for CF gene therapy, a simian immunodeficiency virus (SIV) was pseudotyped with envelope proteins from Sendai virus (SeV), which is known to efficiently transduce unconditioned airway epithelial cells from the apical side. This novel vector was evaluated in mice in vivo and in vitro directed toward CF gene therapy. Here, we show that (i) we can produce relevant titers of an SIV vector pseudotyped with SeV envelope proteins for in vivo use, (ii) this vector can transduce the respiratory epithelium of the murine nose in vivo at levels that may be relevant for clinical benefit in CF, (iii) this can be achieved in a single formulation, and without the need for preconditioning, (iv) expression can last for 15 months, (v) readministration is feasible, (vi) the vector can transduce human air-liquid interface (ALI) cultures, and (vii) functional CF transmembrane conductance regulator (CFTR) chloride channels can be generated in vitro. Our data suggest that this lentiviral vector may provide a step change in airway transduction efficiency relevant to a clinical programme of gene therapy for CF.


Asunto(s)
Fibrosis Quística/terapia , Terapia Genética , Vectores Genéticos , Lentivirus/genética , Virus Sendai/genética , Proteínas del Envoltorio Viral/genética , Animales , Diferenciación Celular , Línea Celular , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Transducción Genética
2.
Acta Biochim Biophys Sin (Shanghai) ; 42(1): 45-51, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20043046

RESUMEN

The aim of the study was to assess if low-frequency ultrasound (US), in the range of 30-35 kHz, increases non-viral gene transfer to the mouse lung. US is greatly attenuated in the lung due to large energy losses at the air/tissue interfaces. The advantages of low-frequency US, compared with high-frequency US are: (i) increased cavitation (responsible for the formation of transient pores in the cell membrane) and (ii) reduced energy losses during lung penetration. Cationic lipid GL67/plasmid DNA (pDNA), polyethylenimine (PEI)/pDNA and naked pDNA were delivered via intranasal instillation and the animals were then exposed to US (sonoporation) at 0.07 or 0.1 MPa for 10 min. Under these conditions, US did not enhance GL67 or PEI-mediated transfection. It did, however, increase naked pDNA gene transfer by approximately 4 folds. Importantly, this was achieved in the absence of microbubbles, which are crucial for the commonly used high-frequency (1 MHz) sonoporation but may not be able to withstand nebulization in a clinically relevant setup. Lung hemorrhage was also assessed and shown to increase with US pressure in a dose-dependent manner. We have thus, established that low-frequency US can enhance lung gene transfer with naked pDNA and this enhancement is more effective than the previously reported 1 MHz US.


Asunto(s)
Pulmón/virología , Polietileneimina/química , Transfección/métodos , Animales , Técnicas de Transferencia de Gen , Pulmón/química , Ratones , Transfección/estadística & datos numéricos , Ultrasonido
3.
J Gene Med ; 12(1): 55-63, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19937989

RESUMEN

BACKGROUND: When assessing the efficacy of gene transfer agents (GTAs) for cystic fibrosis (CF) gene therapy, we routinely evaluate gene transfer in the mouse nose and measure transfection efficiency by assessing transgene-specific mRNA using the real-time (TaqMan) quantitative reverse transcriptase-polymerase chain reaction. TaqMan is traditionally used to quantify expression in whole tissue homogenates, which in the nose would contain many cells types, including respiratory and olfactory epithelium. Only the respiratory epithelium is a satisfactory model for human airway epithelium and therefore CFTR gene transfer should be specifically assessed in respiratory epithelial cells (RECs). METHODS: We have compared laser microdissection, pronase digestion and nasal brushing for: (i) the ability to enrich RECs from the wild-type mouse nose and (ii) the length of time to perform the procedure. Using TaqMan, we subsequently assessed gene transfer in enriched RECs after nasal perfusion of GL67A/pCF1-CFTR complexes in a CF mouse model. RESULTS: Laser microdissection successfully isolated RECs; however, time-consuming sample preparation made this technique unsuitable for high-throughput studies. Pronase digestion was sufficiently rapid but only yielded 19% (range = 13%) RECs (n = 6). The nasal brushing method was superior, yielding 92% (range = 15%) RECs (n = 8) and was equally effective in CF knockout mice (91%, range = 14%, n = 10). Importantly, gene transfer was detectable in brushed RECs from 70% of perfused mice and the number of vector-specific transcripts was comparable to 3.5% of endogenous wild-type Cftr levels. CONCLUSIONS: Isolation of RECs by brushing allows accurate assessment of GTA transfection efficiency in an experimental system that is relevant for CF gene therapy.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulación de la Expresión Génica , Cavidad Nasal/patología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Transgenes/genética , Animales , Separación Celular , Células Epiteliales/metabolismo , Células Epiteliales/patología , Proteínas de Unión a Ácidos Grasos/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Humanos , Rayos Láser , Ratones , Ratones Endogámicos C57BL , Microdisección , Cavidad Nasal/metabolismo , Tabique Nasal/metabolismo , Tabique Nasal/patología , Pronasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Am J Respir Cell Mol Biol ; 43(1): 46-54, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19648474

RESUMEN

A clinical program to assess whether lipid GL67A-mediated gene transfer can ameliorate cystic fibrosis (CF) lung disease is currently being undertaken by the UK CF Gene Therapy Consortium. We have evaluated GL67A gene transfer to the murine nasal epithelium of wild-type and CF knockout mice to assess this tissue as a test site for gene transfer agents. The plasmids used were regulated by either (1) the commonly used short-acting cytomegalovirus promoter/enhancer or (2) the ubiquitin C promoter. In a study of approximately 400 mice with CF, vector-specific CF transmembrane conductance regulator (CFTR) mRNA was detected in nasal epithelial cells of 82% of mice treated with a cytomegalovirus-plasmid (pCF1-CFTR), and 62% of mice treated with an ubiquitin C-plasmid. We then assessed whether CFTR gene transfer corrected a panel of CFTR-specific endpoint assays in the murine nose, including ion transport, periciliary liquid height, and ex vivo bacterial adherence. Importantly, even with the comparatively large number of animals assessed, the CFTR function studies were only powered to detect changes of more than 50% toward wild-type values. Within this limitation, no significant correction of the CF phenotype was detected. At the current levels of gene transfer efficiency achievable with nonviral vectors, the murine nose is of limited value as a stepping stone to human trials.


Asunto(s)
Técnicas de Transferencia de Gen , Nariz/patología , Animales , Adhesión Bacteriana , Fibrosis Quística/genética , Citomegalovirus/genética , Elementos de Facilitación Genéticos , Femenino , Terapia Genética/métodos , Liposomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Plásmidos/metabolismo , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...