Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(19): 7401-7410, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38702865

RESUMEN

Adsorption of a biofouling layer on the surface of biosensors decreases the electrochemical activity and hence shortens the service life of biosensors, particularly implantable and wearable biosensors. Real-time quantification of the loss of activity is important for in situ assessment of performance while presenting an opportunity to compensate for the loss of activity and recalibrate the sensor to extend the service life. Here, we introduce an electrochemical noise measurement technique as a tool for the quantification of the formation of a biofouling layer on the surface of gold. The technique uniquely affords thermodynamic and kinetic information without applying an external bias (potential and/or current), hence allowing the system to be appraised in its innate state. The technique relies on the analysis of non-faradaic current and potential fluctuations that are intrinsically generated by the interaction of charged species at the electrode surface, i.e., gold. An analytical model is extended to explain the significance of parameters drawn from statistical analysis of the noise signal. This concept is then examined in buffered media in the presence of albumin, a common protein in the blood and a known source of a fouling layer in biological systems. Results indicate that the statistical analysis of the noise signal can quantify the loss of electrochemical activity, which is also corroborated by impedance spectroscopy as a complementary technique.


Asunto(s)
Incrustaciones Biológicas , Técnicas Electroquímicas , Oro , Oro/química , Técnicas Electroquímicas/métodos , Técnicas Biosensibles , Propiedades de Superficie , Electrodos , Adsorción
2.
Adv Mater ; 36(10): e2211288, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37017492

RESUMEN

Nanozymes mimic enzymes and that includes their selectivity. To achieve selectivity, significant inspiration for nanoparticle design can come from the geometric and molecular features that make enzymes selective catalysts. The two central features enzymes use are control over the arrangement of atoms in the active site and the placing of the active site down a nanoconfined substrate channel. The implementation of enzyme-inspired features has already been shown to both improve activity and selectivity of nanoparticles for a variety of catalytic and sensing applications. The tuning and control of active sites on metal nanoparticle surfaces ranges from simply changing the composition of the surface metal to sophisticated approaches such as the immobilization of single atoms on a metal substrate. Molecular frameworks provide a powerful platform for the implementation of isolated and discrete active sites while unique diffusional environments further improve selectivity. The implementation of nanoconfined substrate channels around these highly controlled active sites offers further ability to control selectivity through altering the solution environment and transport of reactants and products. Implementing these strategies together offers a unique opportunity to improve nanozyme selectivity in both sensing and catalysis.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Catálisis , Dominio Catalítico
3.
Int J Biol Macromol ; 254(Pt 2): 127695, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37913877

RESUMEN

The use of water-dispersible and sustainable Pd nanocatalysts to reduce toxic heavy metal ions and catalyze important organic reactions has profound significance for the environmental remediation and the catalytic industry. In this work, a novel water-dispersible and recyclable Pd@LNPs nanoreactor composed of Pd nanoparticle cluster core and LNPs shell was developed in microwave reactor in aqueous solution. It turned out that Pd nanoparticles grew uniformly and stably inside LNPs nanosphere due to the coordinated binding and interaction between Pd and the functional groups in LNPs, which was significantly different from surface loading. The green and biodegradable LNPs nanospheres are not only used as reducing agents for Pd (II) and nanocarriers, but also act as individual nanocontainers to provide favorable sites for reactions and effectively control the entry and release of reactants and products. Furthermore, the excellent and efficient catalytic properties of Pd@LNPs were exhibited by CC coupling reactions and the reduction of Cr(VI) and 4-nitrophenol. The Pd@LNPs prepared in this study have the advantages of excellent dispersion, great recyclability, high turnover frequency and better green sustainability metrics. It will have a great significance for the development of the potential high-value of lignin and the progress in the field of bio-nanocatalysts.


Asunto(s)
Nanopartículas , Nanosferas , Paladio/química , Nanotecnología
4.
J Phys Chem C Nanomater Interfaces ; 127(1): 289-299, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-37342618

RESUMEN

Enzymes with multiple distinct active sites linked by substrate channels combined with control over the solution environment near the active sites enable the formation of complex products from simple reactants via the confinement of intermediates. We mimic this concept to facilitate the electrochemical carbon dioxide reduction reaction using nanoparticles with a core that produces intermediate CO at different rates and a porous copper shell. CO2 reacts at the core to produce CO which then diffuses through the Cu to give higher order hydrocarbon molecules. By altering the rate of CO2 delivery, the activity of the CO producing site, and the applied potential, we show that the nanoparticle with lower activity for CO formation produces greater amounts of hydrocarbon products. This is attributed to a combination of higher local pH and the lower amount of CO, resulting in more stable nanoparticles. However, when lower amounts of CO2 were delivered to the core, the particles that are more active for CO formation produce more C3 products. The importance of these results is twofold. They show that in cascade reactions, more active intermediate producing catalysts do not necessarily give greater amounts of high-value products. The effect an intermediate producing active site has on the local solution environment around the secondary active site plays an important role. As the less active catalyst for producing CO also possesses greater stability, we show that nanoconfinement can be used to get the best of both worlds with regard to having a stable catalyst with high activity.

5.
Angew Chem Int Ed Engl ; 61(28): e202200755, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35403340

RESUMEN

The use of nanoparticles and nanostructured electrodes are abundant in electrocatalysis. These nanometric systems contain elements of nanoconfinement in different degrees, depending on the geometry, which can have a much greater effect on the activity and selectivity than often considered. In this Review, we firstly identify the systems containing different degrees of nanoconfinement and how they can affect the activity and selectivity of electrocatalytic reactions. Then we follow with a fundamental understanding of how electrochemistry and electrocatalysis are affected by nanoconfinement, which is beginning to be uncovered, thanks to the development of new, atomically precise manufacturing and fabrication techniques as well as advances in theoretical modeling. The aim of this Review is to help us look beyond using nanostructuring as just a way to increase surface area, but also as a way to break the scaling relations imposed on electrocatalysis by thermodynamics.


Asunto(s)
Nanopartículas , Nanoestructuras , Catálisis , Electroquímica/métodos , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...