Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3424, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654023

RESUMEN

Developing unique mechanisms of action are essential to combat the growing issue of antimicrobial resistance. Supramolecular assemblies combining the improved biostability of non-natural compounds with the complex membrane-attacking mechanisms of natural peptides are promising alternatives to conventional antibiotics. However, for such compounds the direct visual insight on antibacterial action is still lacking. Here we employ a design strategy focusing on an inducible assembly mechanism and utilized electron microscopy (EM) to follow the formation of supramolecular structures of lysine-rich heterochiral ß3-peptides, termed lamellin-2K and lamellin-3K, triggered by bacterial cell surface lipopolysaccharides. Combined molecular dynamics simulations, EM and bacterial assays confirmed that the phosphate-induced conformational change on these lamellins led to the formation of striped lamellae capable of incising the cell envelope of Gram-negative bacteria thereby exerting antibacterial activity. Our findings also provide a mechanistic link for membrane-targeting agents depicting the antibiotic mechanism derived from the in-situ formation of active supramolecules.


Asunto(s)
Antibacterianos , Membrana Celular , Simulación de Dinámica Molecular , Antibacterianos/farmacología , Antibacterianos/química , Membrana Celular/efectos de los fármacos , Lipopolisacáridos/farmacología , Pruebas de Sensibilidad Microbiana , Péptidos/química , Péptidos/farmacología , Microscopía Electrónica , Bacterias Gramnegativas/efectos de los fármacos , Escherichia coli/efectos de los fármacos
2.
Anim Sci J ; 95(1): e13943, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578008

RESUMEN

Cryopreservation of oocytes is an important technology for the in vitro gene banking of female germplasm. Although slow freezing is not feasible, porcine oocytes survive vitrification at high rates. Cryopreservation at the germinal vesicle stage appears to be more advantageous than that at the metaphase-II stage. Several factors are considered to affect the success of vitrification and subsequent utilization of immature porcine oocytes such as the device, the protocols for cryoprotectant application, warming, and the post-warming culture. Although live piglets could be obtained from vitrified immature oocytes, their competence to develop to the blastocyst stage is still reduced compared to their non-vitrified counterparts, indicating that there is room for further improvement. Vitrified oocytes suffer various types of damage and alteration which may reduce their developmental ability. Some of these can recover to some extent during subsequent culture, such as the damage of the cytoskeleton and mitochondria. Others such as premature nuclear progression, DNA damage and epigenetic alterations will require further research to be clarified and addressed. To date, the practical application of oocyte vitrification in pigs has been confined to the gene banking of a few native breeds.


Asunto(s)
Oocitos , Vitrificación , Porcinos , Animales , Femenino , Criopreservación/veterinaria , Criopreservación/métodos , Núcleo Celular , Crioprotectores/farmacología
3.
J Reprod Dev ; 70(1): 42-48, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38246613

RESUMEN

Embryonic transfer of bovine blastocysts produced using in vitro fertilization (IVF) is widely used, although the challenge of compromised conception rates remains. Using bovine oviduct epithelial cells (BOEC) to improve embryo culture conditions has attracted attention, particularly since the recent discovery of extracellular vesicles from BOEC. The selection of embryos for transfer has also been the subject of various studies, and a set of evaluation criteria to predict pregnancy success has been suggested, in which the embryos are judged by their kinetics and morphology at the early stages. In the present study, we established a spontaneously immortalized BOEC line (SI-BOEC) and examined the effects of conditioned medium on IVF embryos, focusing on the results of the recommended criteria. A modified KSOM (mKSOM) was used to prepare conditioned media. Presumptive zygotes were cultured in mKSOM (control), SI-BOEC-conditioned medium, mKSOM supplemented with sediment (pellet) collected after the ultracentrifugation of the conditioned medium (mKSOM/sediment), and the supernatant. A significantly higher percentage of embryos satisfied the recommended criteria when grown in the conditioned medium than in the mKSOM. A higher proportion of embryos developed into blastocysts after achieving the four criteria. A similar tendency was observed when grown in mKSOM/sediment compared to mKSOM; however, this was not observed in the supernatant. Vesicles with a size similar to that of exosomes were observed in the sediment. In conclusion, the culture medium conditioned by SI-BOEC promoted the production of bovine blastocysts that satisfied the four evaluation criteria recommended for embryo selection.


Asunto(s)
Trompas Uterinas , Oviductos , Embarazo , Femenino , Humanos , Bovinos , Animales , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Oviductos/metabolismo , Embrión de Mamíferos , Células Epiteliales , Blastocisto , Fertilización In Vitro/veterinaria
4.
Mol Reprod Dev ; 91(1): e23712, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37882473

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 (Cas9) system is the most efficient and widely used technology for genome editing in all sorts of organisms, including livestock animals. Here, we examined the feasibility of CRISPR/Cas9-derived genome editing (GE) in vitrified porcine zygotes, where the flexible planning of experiments in time and space is expected. OCT4 and CD46 genes were targeted, and the Cas9/sgRNA ribonucleoprotein complexes (RNP) were electroporated into zygotes at 2 h after warming. Vitrification or GE alone did not significantly reduce the developmental rates to the blastocyst stage. However, vitrification followed by GE significantly reduced blastocyst development. Sequencing analysis of the resultant blastocysts revealed efficient GE for both OCT4 (nonvitrified: 91.0%, vitrified: 95.1%) and CD46 (nonvitrified: 94.5%, vitrified: 93.2%), with no significant difference among them. Immunocytochemical analysis showed that GE-blastocysts lacked detectable proteins. They were smaller in size, and the cell numbers were significantly reduced compared with the control (p < 0.01). Finally, we demonstrated that double GE efficiently occurs (100%) when the OCT4-RNP and CD46-RNP are simultaneously introduced into zygotes after vitrification/warming. This is the first demonstration that vitrified porcine zygotes can be used in GE as efficiently as nonvitrified ones.


Asunto(s)
Edición Génica , Cigoto , Porcinos/genética , Animales , Cigoto/metabolismo , ARN Guía de Sistemas CRISPR-Cas , Desarrollo Embrionario , Electroporación , Blastocisto/metabolismo , Criopreservación
5.
J Chem Inf Model ; 63(21): 6877-6889, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37905818

RESUMEN

Antimicrobial cationic peptides (AMPs) are excellent candidates for use as therapeutic antimicrobial agents. Among them, short peptides possessing sequences of 9-11 amino acids have some advantages over long-sequence peptides. However, one of the main limitations of short peptides is that their mechanism of action at the molecular level is not well-known. In this article, we report a model based on multiscale molecular dynamics simulations of short peptides interacting with vesicles containing palmitoyl-oleoyl-phosphatidylglycerol (POPG)/palmitoyl-oleoyl-phosphatidylethanolamine (POPE). Simulations using this approach have allowed us to understand the different behaviors of peptides with antimicrobial activity with respect to those that do not produce this effect. We found remarkable agreement with a series of experimental results directly supporting our model. Moreover, these results allow us to understand the mechanism of action at the molecular level of these short peptides. Our simulations suggest that mechanical inhomogeneities appear in the membrane, promoting membrane rupture when a threshold concentration of peptides adsorbed on the membrane is achieved. These results explain the high structural demand for these peptides to maintain a delicate balance between the affinity for the bilayer surface, a low peptide-peptide repulsion (in order to reach the threshold concentration), and an acceptable tendency to penetrate into the bilayer. This mechanism is different from those proposed for peptides with long amino acid sequences. Such information is very useful from the medicinal chemistry point of view for the design of new small antimicrobial peptides.


Asunto(s)
Antiinfecciosos , Péptidos Catiónicos Antimicrobianos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Secuencia de Aminoácidos , Simulación de Dinámica Molecular , Membrana Dobles de Lípidos/química
6.
J Chem Inf Model ; 63(12): 3799-3813, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37278479

RESUMEN

Computer-assisted study and design of non-natural peptidomimetics is increasingly important in the development of novel constructs with widespread applicability. Among these methods, molecular dynamics can accurately describe monomeric as well as oligomeric states of these compounds. We studied seven different sequences composed of cyclic and acyclic ß-amino acids, the closest homologues of natural peptides, and compared the performance on them of three force field families in which specific modifications were made to improve reproduction of ß-peptide structures. Altogether 17 systems were simulated, each for 500 ns, testing multiple starting conformations and in three cases also oligomer formation and stability from eight ß-peptide monomers. The results indicated that our recently developed CHARMM force field extension, based on torsional energy path matching of the ß-peptide backbone against quantum-chemical calculations, performs best overall, reproducing the experimental structures accurately in all monomeric simulations and correctly describing all the oligomeric examples. The Amber and GROMOS force fields could only treat some of the seven peptides (four in each case) without further parametrization. Amber was able to reproduce the experimental secondary structure of those ß-peptides which contained cyclic ß-amino acids, while the GROMOS force field had the lowest performance in this sense. From the latter two, Amber was able to hold together already formed associates in the prepared state but was not able to yield spontaneous oligomer formation in the simulations.


Asunto(s)
Ámbar , Simulación de Dinámica Molecular , Humanos , Péptidos/química , Estructura Secundaria de Proteína , Aminoácidos
7.
Vet Med Int ; 2023: 5702970, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37101560

RESUMEN

The aim of this study was to improve the production efficiency of Vietnamese native Ban pig embryos using somatic cell nuclear transfer (SCNT). Fibroblast cells from Ban pigs were injected into the enucleated cytoplasts of crossbred gilts, and the reconstructed embryos were subsequently cultured. In the first experiment, cytoplasts were isolated from oocytes matured in either a defined porcine oocyte medium (POM) or in TCM199 medium supplemented with porcine follicular fluid. Both media were supplemented with gonadotropic hormones, either for the first 22 h of in vitro maturation (IVM) or for the entire 44 h of IVM. In the second experiment, the reconstructed SCNT embryos were cultured with or without 50 µM chlorogenic acid (CGA). Furthermore, this study examined parthenogenetic embryos. The IVM medium and duration of hormone treatment did not affect embryo development. CGA supplementation to the culture medium significantly increased blastocyst formation rates in parthenogenetic embryos but not in SCNT embryos. However, CGA supplementation significantly reduced the apoptotic index in blastocysts regardless of embryo source. In conclusion, the IVM method did not affect SCNT embryo production, while CGA supplementation during embryo culture improved the quality of SCNT embryos in indigenous pig breeds.

8.
PLoS One ; 18(3): e0282959, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36930621

RESUMEN

The present study investigated the effects of vitrification of porcine oocytes either at the immature Germinal Vesicle (GV) stage before in vitro maturation (GV-stage oocytes) or at the pronuclear stage after in vitro maturation and fertilization (zygotes) on DNA integrity in relevance with their subsequent embryo development. Vitrification at the GV stage but not at the pronuclear stage significantly increased the abundance of double-strand breaks (DSBs) in the DNA measured by the relative fluorescence after γH2AX immunostaining. Treatment of GV-stage oocytes with cryoprotectant agents alone had no effect on DSB levels. When oocytes were vitrified at the GV stage and subjected to in vitro maturation and fertilization (Day 0) and embryo culture, significantly increased DSB levels were detected in subsequent cleavage-stage embryos which were associated with low cell numbers on Day 2, the upregulation of the RAD51 gene at the 4-8 cell stage (measured by RT-qPCR) and reduced developmental ability to the blastocyst stage when compared with the non-vitrified control. However, total cell numbers and percentages of apoptotic cells (measured by TUNEL) in resultant blastocysts were not different from those of the non-vitrified control. On the other hand, vitrification of zygotes had no effect on DSB levels and the expression of DNA-repair genes in resultant embryos, and their development did not differ from that of the non-vitrified control. These results indicate that during vitrification GV-stage oocytes are more susceptible to DNA damages than zygotes, which affects their subsequent development to the blastocyst stage.


Asunto(s)
Vitrificación , Cigoto , Porcinos , Animales , Criopreservación/métodos , Fertilización In Vitro/métodos , Oocitos/metabolismo , Blastocisto , Daño del ADN
9.
Anim Sci J ; 93(1): e13795, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36562274

RESUMEN

Vitrification and warming can trigger premature meiosis in immature porcine oocytes. Our aim was to compare the efficacies of two meiotic inhibitors, dibutyryl-cAMP and roscovitine for the meiosis synchronization during in vitro maturation (IVM) of porcine oocytes vitrified at the germinal vesicle (GV) stage. We first compared the efficacy of 1 mM dibutyryl-cAMP and 25 µM roscovitine on meiotic arrest during the first 22 h of IVM. Dibutyryl-cAMP could maintain the GV stage in 83.5% of oocytes; however, roscovitine was even more effective (96.6%), whereas only 17.4% of the oocytes remained at the GV stage without these additives. Temporal meiotic arrest for 22 h by roscovitine did not reduce the percentage of oocytes reaching the Metaphase II stage during subsequent IVM. However, after parthenogenetic stimulation or in vitro fertilization, subsequent embryo development to the blastocyst stage was compromised after roscovitine treatment, whereas dibutyryl-cAMP improved the percentage of blastocyst development. In conclusion, dibutyryl-cAMP could derogate but not completely prevent premature meiosis in vitrified oocytes, whereas roscovitine could more efficiently prevent it. However, for embryo production, the use of roscovitine was disadvantageous, whereas the use of dibutyryl-cAMP was beneficial.


Asunto(s)
Desarrollo Embrionario , Oocitos , Animales , Porcinos , Roscovitina/farmacología , Oocitos/fisiología , Meiosis , Vitrificación , Fertilización In Vitro/veterinaria
10.
ACS Appl Mater Interfaces ; 14(50): 55320-55331, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36473125

RESUMEN

Self-assembled peptide nanostructures with stimuli-responsive features are promising as functional materials. Despite extensive research efforts, water-soluble supramolecular constructs that can interact with lipid membranes in a controllable way are still challenging to achieve. Here, we have employed a short membrane anchor protein motif (GLFD) and coupled it to a spiropyran photoswitch. Under physiological conditions, these conjugates assemble into ∼3.5 nm thick, foil-like peptide bilayer morphologies. Photoisomerization from the closed spiro (SP) form to the open merocyanine (MC) form of the photoswitch triggers rearrangements within the foils. This results in substantial changes in their membrane-binding properties, which also varies sensitively to lipid composition, ranging from reversible nanofoil reformation to stepwise membrane adsorption. The formed peptide layers in the assembly are also able to attach to various liposomes with different surface charges, enabling the fusion of their lipid bilayers. Here, SP-to-MC conversion can be used both to trigger and to modulate the liposome fusion efficiency.


Asunto(s)
Membrana Dobles de Lípidos , Liposomas , Membrana Dobles de Lípidos/química , Liposomas/química , Péptidos , Proteínas de la Membrana
11.
Cell Mol Life Sci ; 79(9): 471, 2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35932293

RESUMEN

In synapses that show signs of local apoptosis and mitochondrial stress and undergo neuro-immunological synapse pruning, an increase in the levels of the presynaptic protein, neuronal-specific septin-3 can be observed. Septin-3 is a member of the septin GTPase family with the ability to form multimers and contribute to the cytoskeleton. However, the function of septin-3 remains elusive. Here, we provide evidence that septin-3 is capable of binding the most-studied autophagy protein Atg8 homolog microtubule-associated protein 1 light chain 3B (LC3B), besides another homolog, GABA receptor-associated protein-like 2 (GABARAPL2). Moreover, we demonstrate that colocalization of septin-3 and LC3B increases upon chemical autophagy induction in primary neuronal cells. Septin-3 is accumulated in primary neurons upon autophagy enhancement or blockade, similar to autophagy proteins. Using electron microscopy, we also show that septin-3 localizes to LC3B positive membranes and can be found at mitochondria. However, colocalization results of septin-3 and the early mitophagy marker PTEN-induced kinase 1 (PINK1) do not support that binding of septin-3 to mitochondria is mitophagy related. We conclude that septin-3 correlates with synaptic/neuronal autophagy, binds Atg8 and localizes to autophagic membranes that can be enhanced with chemical autophagy induction. Based on our results, elevated septin-3 levels might indicate enhanced or impeded autophagy in neurons.


Asunto(s)
Autofagosomas , Septinas , Autofagosomas/metabolismo , Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Mitofagia , Neuronas/metabolismo , Septinas/metabolismo
12.
Colloids Surf B Biointerfaces ; 218: 112716, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35907357

RESUMEN

Microfluidic resistive pulse sensing (MRPS) was used to determine the size -distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on detecting nearly 30,000 single virions. However, the ultrastructure of SARS-CoV-2 is thoroughly described, but ensemble properties of SARS-CoV-2, e.g., its particle size distribution, are sparsely reported. According to the MRPS results, the size distribution of SARS-CoV-2 follows a log-normal function with a mean value of 85.1 nm, which corresponds to an approximate diameter of the viral envelope. This result also confirms the low number (< 50) of spike proteins on the surface of the virions.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Microfluídica , Glicoproteína de la Espiga del Coronavirus/metabolismo , Virión
13.
Cryobiology ; 106: 32-38, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523314

RESUMEN

Cryopreservation of mammalian zygotes can be advantageous since it enables their flexile use in time and space for alternative purposes such as genome editing. Here we report a simple, quick and inexpensive vitrification protocol for in vitro produced bovine zygotes which enables their bulk preservation. Slaughterhouse-derived oocytes were subjected to in vitro maturation and fertilization (IVF). Ten h after IVF, cumulus-enclosed zygotes were equilibrated in 2% (v/v) ethylene glycol + 2% (v/v) propylene glycol for 13-15 min then vitrified in groups of 52-100 in 2 µL microdrops of 17.5% (v/v) ethylene glycol + 17.5% (v/v) propylene glycol supplemented with 0.3 M sucrose and 50 mg/mL polyvinylpyrrolidone. The presence of cumulus cells is important for the success of the process. Therefore, we applied a modified IVF protocol using a short (30 min) co-incubation interval which allowed zygote culture with attached cumulus cells until vitrification and even reduced polyspermy rates without affecting the total fertilization rate. Vitrified zygotes were similar to their non-vitrified counterparts in terms of survival, post-warming development to the blastocyst stage and blastocyst quality measured by cell numbers and cryo-survival. In conclusion, our vitrification protocol integrated with the modified IVF system enabled the quick cryopreservation of bovine zygotes in large groups without reducing their developmental competence to the blastocyst stage.


Asunto(s)
Vitrificación , Cigoto , Animales , Blastocisto , Bovinos , Criopreservación/métodos , Crioprotectores/farmacología , Glicol de Etileno/farmacología , Fertilización In Vitro/métodos , Fertilización In Vitro/veterinaria , Mamíferos , Oocitos , Propilenglicol
14.
Sci Rep ; 12(1): 977, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35046483

RESUMEN

Extracellular vesicles (EVs) are released during the storage of red blood cell (RBC) concentrates and might play adverse or beneficial roles throughout the utilization of blood products (transfusion). Knowledge of EV release associated factors and mechanism amends blood product management. In the present work the impact of storage time and medium (blood preserving additive vs isotonic phosphate buffer) on the composition, size, and concentration of EVs was studied using attenuated total reflection infrared (ATR-IR) spectroscopy, microfluidic resistive pulse sensing (MRPS) and freeze-fraction combined transmission electron micrography (FF-TEM). The spectroscopic protein-to-lipid ratio based on amide and the C-H stretching band intensity ratio indicated the formation of various vesicle subpopulations depending on storage conditions. After short storage, nanoparticles with high relative protein content were detected. Spectral analysis also suggested differences in lipid and protein composition, too. The fingerprint region (from 1300 to 1000 cm-1) of the IR spectra furnishes additional information about the biomolecular composition of RBC-derived EVs (REVs) such as adenosine triphosphate (ATP), lactose, glucose, and oxidized hemoglobin. The difference between the vesicle subpopulations reveals the complexity of the REV formation mechanism. IR spectroscopy, as a quick, cost-effective, and label-free technique provides valuable novel biochemical insight and might be used complementary to traditional omics approaches on EVs.


Asunto(s)
Eritrocitos/química , Vesículas Extracelulares/química , Manejo de Especímenes , Cromatografía en Gel , Eritrocitos/citología , Voluntarios Sanos , Humanos , Técnicas Analíticas Microfluídicas , Microscopía Electrónica de Transmisión , Espectrofotometría Infrarroja
15.
Anim Sci J ; 93(1): e13690, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35088495

RESUMEN

Premature meiotic arrest during in vitro maturation (IVM) of porcine oocytes after germinal vesicle breakdown is associated with microfilament degradation. We aimed to clarify (1) if such arrest occurs at the metaphase-I (MI) stage or the oocyte progresses to a so-called diploid metaphase-II (MII) stage and (2) if microfilament degradation is the cause or result of the meiotic arrest. The number and morphology of chromosomes in oocytes showing premature meiotic arrest at 44 h IVM (38 monovalents) was similar to those cultured in the presence of the actin polymerization-inhibitor cytochalasin-B, but different from those of MI-stage (19 bivalents), and MII-stage oocytes (19 monovalents) at 33 and 44 h of IVM, respectively. Immunostaining revealed similar frequencies of microfilament degradation in prematurely arrested and cytochalasin-B-treated oocytes (58.7% and 57.2%, respectively), which were higher (P < 0.05) than those in MI- and MII-stage oocytes (10.6% and 6.8%, respectively). Induction of MI-arrest by nocodazole did not affect microfilament morphology. ATP and mRNA levels of microfilament-related genes in oocytes were similar among all groups. These results suggest that altered microfilament dynamics contribute to the formation of diploid metaphase spindles in oocytes, which fail to reach the MII stage. However, the cause of microfilament degeneration remains unclear.


Asunto(s)
Diploidia , Oocitos , Citoesqueleto de Actina , Animales , Citocalasinas , Meiosis , Metafase , Porcinos
16.
Anim Sci J ; 93(1): e13685, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35083820

RESUMEN

The present study was conducted to examine the feasibility of in vitro embryo production and transfer technologies for producing piglets of Agu, an Okinawan indigenous pig breed. After collection of oocytes from surgically dissected ovaries, they were subjected to in vitro maturation. After in vitro maturation/fertilization, a total of 616 putative embryos were transferred into four commercial Western pig recipients, one of which became pregnant and farrowed a total of eight Agu piglets. These results demonstrate that in vitro embryo production using ovaries from Agu females is useful for breeding management and conservation of indigenous breeds.


Asunto(s)
Fertilización In Vitro , Oocitos , Animales , Embrión de Mamíferos , Femenino , Fertilización In Vitro/veterinaria , Embarazo , Porcinos
17.
Zygote ; 30(3): 298-304, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34612188

RESUMEN

This study was conducted to examine whether the nuclear to cytoplasmic (N/C) ratio had any influence on the timing of embryo compaction and blastocoel formation, as well as formation rate and quality of blastocyst. First, we produced embryos with increased N/C ratio by removal of approximately one-third of the cytoplasm and with decreased N/C ratio by doubling the oocyte cytoplasm with an enucleated oocyte. The initiation of compaction and cavitation in reduced cytoplasm group was significantly earlier (P < 0.05) compared with the control and doubled cytoplasm groups. The rate of blastocysts in the reduced cytoplasm and doubled cytoplasm groups was significantly lower (P < 0.05) compared with the control group. Blastocyst quality in terms of total cell number in the reduced cytoplasm group was significantly lower (P < 0.05) compared with the doubled cytoplasm group, but not different from the control group. Next, we produced embryos with various N/C ratios by oocyte fusion combined with cytochalasin D treatment. The onset of compaction and cavitation in the 2N/2C group (decreased N/C ratio) was significantly delayed (P < 0.05) or had the tendency to be delayed (P = 0.064), respectively, compared with the control group (2N/1C). A significantly higher rate of blastocyst was observed in the 4N/2C group compared with the 1N/1C group (P < 0.05) but not different from the remaining groups. These results demonstrated that an increase in N/C ratio caused an earlier occurrence of morula compaction and blastocyst formation in both in vitro fertilization (IVF) and parthenogenetically activated pig embryos.


Asunto(s)
Desarrollo Embrionario , Partenogénesis , Animales , Blastocisto , Fertilización In Vitro , Mórula , Oocitos/fisiología , Partenogénesis/fisiología , Porcinos
18.
J Reprod Dev ; 68(1): 53-61, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-34866119

RESUMEN

During cryopreservation, spermatozoa may suffer cold and cryo-induced injuries -associated with alterations in cell defense systems- that are detrimental to their function and subsequent fertility. This study aimed to determine the efficacy of supplementing the semen freezing extender with the antioxidant reduced glutathione (GSH) in cattle. Semen was collected from four bulls and diluted in a freezing extender supplemented with or without GSH (0, 1, 5, and 10 mM) before the cooling step of the cryopreservation process. After thawing, the quality of the frozen-thawed semen was investigated for motility, viability, acrosomal and DNA integrity, and subsequent embryo development after in vitro fertilization of bovine oocytes. Additionally, semen from one of the bulls was used to analyze semen antioxidative potential, sperm penetration into oocytes, male pronucleus formation rate, and embryo DNA integrity. The sperm quality varied among bulls after GSH supplementation. One bull had decreased sperm total motility, and two bulls had decreased sperm DNA integrity. GSH supplementation had positive effects on embryo development for three bulls. Two of them showed both improved cleavage and blastocyst formation rates, while the other one only showed an improved cleavage rate. We observed positive effects on early male pronucleus formation and no negative effects on DNA integrity and cell number in blastocyst stage embryos. Although the effect varies depending on individual bulls and GSH concentration, GSH supplementation in semen may improve in vitro embryo production from frozen semen.


Asunto(s)
Preservación de Semen , Animales , Bovinos , Criopreservación/veterinaria , Suplementos Dietéticos , Fertilización In Vitro/veterinaria , Congelación , Glutatión/farmacología , Masculino , Semen , Análisis de Semen/veterinaria , Preservación de Semen/veterinaria , Motilidad Espermática , Espermatozoides
19.
Anim Sci J ; 92(1): e13650, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34697861

RESUMEN

Male pronucleus (MPN) formation is a very important physiological event during fertilization, which affects in vitro production of transferrable embryos. The aim of this study was to find out the correlation between the number of penetrated sperm and the occurrence of failure of MPN formation in porcine oocytes. In vitro matured porcine oocytes were fertilized in vitro with frozen epididymal sperm. Two different frozen sperm lots were tested in this study, which were different in terms of polyspermy rates. The numbers and the status of penetrated sperm in oocytes were evaluated 10 h after insemination. Under high polyspermy condition, the polyspermy rate was 83.5% with an average mean of 3.5 sperms per penetrated oocyte, whereas the percentage of polyspermy was 65.5% with an average mean of 2.4 sperms per penetrated oocyte under moderate polyspermic condition. Correlation analysis revealed a negative correlation between the number of penetrated sperm and their MPN formation percentage both in the sperm lot of high polyspermy (R = -0.560, p < 0.05) and in the sperm lot of moderate polyspermy (R = -0.405, p < 0.05) which suggests that penetration of excessive spermatozoa disables the oocyte cytoplasm to promote MPN formation.


Asunto(s)
Fertilización In Vitro , Interacciones Espermatozoide-Óvulo , Animales , Fertilización , Fertilización In Vitro/veterinaria , Masculino , Oocitos , Espermatozoides , Porcinos
20.
Front Mol Biosci ; 8: 742023, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34708076

RESUMEN

Host defense antimicrobial peptides (HDPs) constitute an integral component of the innate immune system having nonspecific activity against a broad spectrum of microorganisms. They also have diverse biological functions in wound healing, angiogenesis, and immunomodulation, where it has also been demonstrated that they have a high affinity to interact with human lipid signaling molecules. Within bacterial biofilms, quorum sensing (QS), the vital bacterial cell-to-cell communication system, is maintained by similar diffusible small molecules which control phenotypic traits, virulence factors, biofilm formation, and dispersion. Efficient eradication of bacterial biofilms is of particular importance as these colonies greatly help individual cells to tolerate antibiotics and develop antimicrobial resistance. Regarding the antibacterial function, for several HDPs, including the human cathelicidin LL-37, affinity to eradicate biofilms can exceed their activity to kill individual bacteria. However, related underlying molecular mechanisms have not been explored yet. Here, we employed circular dichroism (CD) and UV/VIS spectroscopic analysis, which revealed that LL-37 exhibits QS signal affinity. This archetypal representative of HDPs interacts with the Pseudomonas quinolone signal (PQS) molecules, producing co-assemblies with peculiar optical activity. The binding of PQS onto the asymmetric peptide chains results in chiral supramolecular architectures consisting of helically disposed, J-aggregated molecules. Besides the well-known bacterial membrane disruption activity, our data propose a novel action mechanism of LL-37. As a specific case of the so-called quorum quenching, QS signal molecules captured by the peptide are sequestered inside co-assemblies, which may interfere with the microbial QS network helping to prevent and eradicate bacterial infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...