Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Hum Genet ; 141(3-4): 951-963, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34410490

RESUMEN

In this study, we investigated the association of ACAN variants with otosclerosis, a frequent cause of hearing loss among young adults. We sequenced the coding, 5'-UTR and 3'-UTR regions of ACAN in 1497 unrelated otosclerosis cases and 1437 matched controls from six different subpopulations. The association between variants in ACAN and the disease risk was tested through single variant and gene-based association tests. After correction for multiple testing, 14 variants were significantly associated with otosclerosis, ten of which represented independent association signals. Eight variants showed a consistent association across all subpopulations. Allelic odds ratios of the variants identified four predisposing and ten protective variants. Gene-based tests showed an association of very rare variants in the 3'-UTR with the phenotype. The associated exonic variants are all located in the CS domain of ACAN and include both protective and predisposing variants with a broad spectrum of effect sizes and population frequencies. This includes variants with strong effect size and low frequency, typical for monogenic diseases, to low effect size variants with high frequency, characteristic for common complex traits. This single-gene allelic spectrum with both protective and predisposing alleles is unique in the field of complex diseases. In conclusion, these findings are a significant advancement to the understanding of the etiology of otosclerosis.


Asunto(s)
Otosclerosis , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Agrecanos/genética , Susceptibilidad a Enfermedades , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Otosclerosis/genética , Fenotipo , Polimorfismo de Nucleótido Simple
2.
Eur J Hum Genet ; 29(12): 1745-1755, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33737726

RESUMEN

The involvement of genetic factors in the pathogenesis of KC has long been recognized but the identification of variants affecting the underlying protein functions has been challenging. In this study, we selected 34 candidate genes for KC based on previous whole-exome sequencing (WES) and the literature, and resequenced them in 745 KC patients and 810 ethnically matched controls from Belgium, France and Italy. Data analysis was performed using the single variant association test as well as gene-based mutation burden and variance components tests. In our study, we detected enrichment of genetic variation across multiple gene-based tests for the genes COL2A1, COL5A1, TNXB, and ZNF469. The top hit in the single variant association test was obtained for a common variant in the COL12A1 gene. These associations were consistently found across independent subpopulations. Interestingly, COL5A1, TNXB, ZNF469 and COL12A1 are all known Ehlers-Danlos Syndrome (EDS) genes. Though the co-occurrence of KC and EDS has been reported previously, this study is the first to demonstrate a consistent role of genetic variants in EDS genes in the etiology of KC. In conclusion, our data show a shared genetic etiology between KC and EDS, and clearly confirm the currently disputed role of ZNF469 in disease susceptibility for KC.


Asunto(s)
Síndrome de Ehlers-Danlos/genética , Queratocono/genética , Colágeno Tipo II/genética , Colágeno Tipo V/genética , Síndrome de Ehlers-Danlos/diagnóstico , Humanos , Queratocono/diagnóstico , Análisis de Secuencia de ADN , Tenascina/genética , Factores de Transcripción/genética
3.
New Phytol ; 226(6): 1766-1780, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32077108

RESUMEN

We investigated the interaction between osmotic stress and auxin signaling in leaf growth regulation. Therefore, we grew Arabidopsis thaliana seedlings on agar media supplemented with mannitol to impose osmotic stress and 1-naphthaleneacetic acid (NAA), a synthetic auxin. We performed kinematic analysis and flow-cytometry to quantify the effects on cell division and expansion in the first leaf pair, determined the effects on auxin homeostasis and response (DR5::ß-glucuronidase), performed a next-generation sequencing transcriptome analysis and investigated the response of auxin-related mutants. Mannitol inhibited cell division and expansion. NAA increased the effect of mannitol on cell division, but ameliorated its effect on expansion. In proliferating cells, NAA and mannitol increased free IAA concentrations at the cost of conjugated IAA and stimulated DR5 promotor activity. Transcriptome analysis shows a large overlap between NAA and osmotic stress-induced changes, including upregulation of auxin synthesis, conjugation, transport and TRANSPORT INHIBITOR RESPONSE1 (TIR1) and AUXIN RESPONSE FACTOR (ARF) response genes, but downregulation of Aux/IAA response inhibitors. Consistently, arf7/19 double mutant lack the growth response to auxin and show a significantly reduced sensitivity to osmotic stress. Our results show that osmotic stress inhibits cell division during leaf growth of A. thaliana at least partly by inducing the auxin transcriptional response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Presión Osmótica , Reguladores del Crecimiento de las Plantas , Hojas de la Planta/metabolismo
4.
Mol Genet Genomics ; 294(4): 1001-1006, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30968248

RESUMEN

Otosclerosis is a common form of hearing loss (HL) due to abnormal remodeling of the otic capsule. The genetic causes of otosclerosis remain largely unidentified. Only mutations in a single gene, SERPINF1, were previously published in patients with familial otosclerosis. To unravel the contribution of genetic variation in this gene to otosclerosis, this gene was re-sequenced in a large population of otosclerosis patients and controls. Resequencing of the 5' and 3' UTRs, coding regions, and exon-intron boundaries of SERPINF1 was performed in 1604 unrelated otosclerosis patients and 1538 unscreened controls, and in 62 large otosclerosis families. Our study showed no enrichment of rare variants, stratified by type, in SERPINF1 in patients versus controls. Furthermore, the c.392C > A (p.Ala131Asp) variant, previously reported as pathogenic, was identified in three patients and four controls, not replicating its pathogenic nature. We could also not find evidence for a pathogenic role in otosclerosis for 5' UTR variants in the SERPINF1-012 transcript (ENST00000573763), described as the major transcript in human stapes. Furthermore, no rare variants were identified in the otosclerosis families. This study does not support a pathogenic role for variants in SERPINF1 as a cause of otosclerosis. Therefore, the etiology of the disease remains largely unknown and will undoubtedly be the focus of future studies.


Asunto(s)
Proteínas del Ojo/genética , Factores de Crecimiento Nervioso/genética , Otosclerosis/genética , Análisis de Secuencia de ADN/métodos , Serpinas/genética , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Linaje
5.
Genet Med ; 21(5): 1199-1208, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30287925

RESUMEN

PURPOSE: To characterize new molecular factors implicated in a hereditary congenital facial paresis (HCFP) family and otosclerosis. METHODS: We performed exome sequencing in a four-generation family presenting nonprogressive HCFP and mixed hearing loss (HL). MEPE was analyzed using either Sanger sequencing or molecular inversion probes combined with massive parallel sequencing in 89 otosclerosis families, 1604 unrelated affected subjects, and 1538 unscreened controls. RESULTS: Exome sequencing in the HCFP family led to the identification of a rare segregating heterozygous frameshift variant p.(Gln425Lysfs*38) in MEPE. As the HL phenotype in this family resembled otosclerosis, we performed variant burden and variance components analyses in a large otosclerosis cohort and demonstrated that nonsense and frameshift MEPE variants were significantly enriched in affected subjects (p = 0.0006-0.0060). CONCLUSION: MEPE exerts its function in bone homeostasis by two domains, an RGD and an acidic serine aspartate-rich MEPE-associated (ASARM) motif inhibiting respectively bone resorption and mineralization. All variants associated with otosclerosis are predicted to result in nonsense mediated decay or an ASARM-and-RGD-truncated MEPE. The HCFP variant is predicted to produce an ASARM-truncated MEPE with an intact RGD motif. This difference in effect on the protein corresponds with the presumed pathophysiology of both diseases, and provides a plausible molecular explanation for the distinct phenotypic outcome.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Parálisis Facial/congénito , Glicoproteínas/genética , Otosclerosis/genética , Fosfoproteínas/genética , Adulto , Huesos/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Parálisis Facial/etiología , Parálisis Facial/genética , Parálisis Facial/metabolismo , Familia , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Variación Genética/genética , Glicoproteínas/metabolismo , Pérdida Auditiva/genética , Heterocigoto , Humanos , Masculino , Linaje , Fenotipo , Fosfoproteínas/metabolismo , Secuenciación del Exoma/métodos
6.
Otol Neurotol ; 39(6): 732-738, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29889784

RESUMEN

OBJECTIVES: The purpose of this study is to report the results of a comprehensive etiological work-up for congenitally deaf children including targeted next generation sequencing. STUDY DESIGN: Retrospective case review. SETTING: Tertiary referral center. PATIENTS: Fifty children with congenital, bilateral profound hearing loss (HL) (>90 dBnHL). INTERVENTIONS: Etiological work-up included testing for pathogenic variants in GJB2, a phenotype driven genetic analysis, screening for congenital infections and imaging. When no etiology could be found, comprehensive genetic testing was performed using a HL gene panel including 45 syndromic and 96 non-syndromic HL genes. RESULTS: Eleven patients carried bi-allelic pathogenic variants in GJB2. Phenotype driven genetic analysis identified two homozygous KCNQ1 patients (Jervell and Lange Nielsen syndrome) and one heterozygous CHD7 patient (CHARGE syndrome). One patient was diagnosed with achondroplasia and one had a clinical diagnosis of Waardenburg syndrome. A deafness gene panel evaluated 16 patients. In 12 out of 16, we identified a pathogenic (n = 12) or likely pathogenic (n = 2) variant and one variant of unknown significance (VUS). A definite diagnosis of non-syndromic or syndromic HL was made in 18 and seven patients, respectively. Non-genetic causes were congenital cytomegalovirus infection (n = 11), anatomic abnormalities (n = 2), neurological/metabolic/polymalformative conditions (n = 3), meningitis (n = 1), and auditory neuropathy (n = 1). CONCLUSIONS: A definite genetic cause was found in 25 (50%) of congenital, bilaterally deaf children. Our data show that implementation of a gene panel improves the diagnostic yield for etiological work-up of congenital profound HL to 86%. Identification of the etiology of congenital HL may contribute to predicting outcomes of cochlear implantation.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Pérdida Auditiva Sensorineural/congénito , Pérdida Auditiva Sensorineural/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Adolescente , Niño , Femenino , Pruebas Genéticas , Humanos , Lactante , Masculino , Estudios Retrospectivos
7.
Expert Rev Mol Diagn ; 17(8): 751-760, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28593790

RESUMEN

INTRODUCTION: Hearing loss (HL) is the most common birth defect in industrialized countries with far-reaching social, psychological and cognitive implications. It is an extremely heterogeneous disease, complicating molecular testing. The introduction of next-generation sequencing (NGS) has resulted in great progress in diagnostics allowing to study all known HL genes in a single assay. The diagnostic yield is currently still limited, but has the potential to increase substantially. Areas covered: In this review the utility of NGS and the problems for comprehensive molecular testing for HL are evaluated and discussed. Expert commentary: Different publications have proven the appropriateness of NGS for molecular testing of heterogeneous diseases such as HL. However, several problems still exist, such as pseudogenic background of some genes and problematic copy number variant analysis on targeted NGS data. Another main challenge for the future will be the establishment of population specific mutation-spectra to achieve accurate personalized comprehensive molecular testing for HL.


Asunto(s)
Pérdida Auditiva/diagnóstico , Pérdida Auditiva/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Técnicas de Diagnóstico Molecular/métodos , Mutación , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino
8.
Hum Mutat ; 37(8): 812-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27068579

RESUMEN

Although there are nearly 100 different causative genes identified for nonsyndromic hearing loss (NSHL), Sanger sequencing-based DNA diagnostics usually only analyses three, namely, GJB2, SLC26A4, and OTOF. As this is seen as inadequate, there is a need for high-throughput diagnostic methods to detect disease-causing variations, including single-nucleotide variations (SNVs), insertions/deletions (Indels), and copy-number variations (CNVs). In this study, a targeted resequencing panel for hearing loss was developed including 79 genes for NSHL and selected forms of syndromic hearing loss. One-hundred thirty one presumed autosomal-recessive NSHL (arNSHL) patients of Western-European ethnicity were analyzed for SNVs, Indels, and CNVs. In addition, we established a straightforward variant classification system to deal with the large number of variants encountered. We estimate that combining prescreening of GJB2 with our panel leads to a diagnosis in 25%-30% of patients. Our data show that after GJB2, the most commonly mutated genes in a Western-European population are TMC1, MYO15A, and MYO7A (3.1%). CNV analysis resulted in the identification of causative variants in two patients in OTOA and STRC. One of the major challenges for diagnostic gene panels is assigning pathogenicity for variants. A collaborative database collecting all identified variants from multiple centers could be a valuable resource for hearing loss diagnostics.


Asunto(s)
Predisposición Genética a la Enfermedad , Pérdida Auditiva Sensorineural/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Análisis de Secuencia de ADN/métodos , Conexina 26 , Conexinas/genética , Variaciones en el Número de Copia de ADN , Exoma , Proteínas Ligadas a GPI/genética , Pérdida Auditiva Sensorineural/genética , Humanos , Mutación INDEL , Péptidos y Proteínas de Señalización Intercelular , Proteínas de la Membrana/genética , Miosina VIIa , Miosinas/genética , Polimorfismo de Nucleótido Simple
9.
Am J Hum Genet ; 97(4): 535-45, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26387595

RESUMEN

Heimler syndrome (HS) is a rare recessive disorder characterized by sensorineural hearing loss (SNHL), amelogenesis imperfecta, nail abnormalities, and occasional or late-onset retinal pigmentation. We ascertained eight families affected by HS and, by using a whole-exome sequencing approach, identified biallelic mutations in PEX1 or PEX6 in six of them. Loss-of-function mutations in both genes are known causes of a spectrum of autosomal-recessive peroxisome-biogenesis disorders (PBDs), including Zellweger syndrome. PBDs are characterized by leukodystrophy, hypotonia, SNHL, retinopathy, and skeletal, craniofacial, and liver abnormalities. We demonstrate that each HS-affected family has at least one hypomorphic allele that results in extremely mild peroxisomal dysfunction. Although individuals with HS share some subtle clinical features found in PBDs, the diagnosis was not suggested by routine blood and skin fibroblast analyses used to detect PBDs. In conclusion, our findings define HS as a mild PBD, expanding the pleiotropy of mutations in PEX1 and PEX6.


Asunto(s)
Adenosina Trifosfatasas/genética , Amelogénesis Imperfecta/genética , Fibroblastos/patología , Pérdida Auditiva Sensorineural/genética , Proteínas de la Membrana/genética , Mutación/genética , Uñas Malformadas/genética , Peroxisomas/patología , ATPasas Asociadas con Actividades Celulares Diversas , Adolescente , Adulto , Estudios de Casos y Controles , Células Cultivadas , Niño , Preescolar , Femenino , Fibroblastos/metabolismo , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Masculino , Linaje , Peroxisomas/metabolismo , Fenotipo , Pronóstico , Tasa de Supervivencia , Adulto Joven
10.
Otol Neurotol ; 35(6): 1058-64, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24643032

RESUMEN

BACKGROUND/HYPOTHESIS: Otosclerosis is a frequent cause of hearing impairment characterized by abnormal resorption and deposition of bone in the human otic capsule. It is a disease of complex etiopathogenesis that is caused by both environmental and genetic factors. The goal of this study is to replicate association for genes that were previously reported to be associated with otosclerosis. However, in this study, patients were used in which the presence of otosclerotic foci was confirmed by histologic investigation, in contrast to previous studies, that did not use histologic confirmation. METHODS: Case-control association study using 153 cases and 300 controls. Thirteen single nucleotide polymorphisms (SNPs) in 6 genes (COL1A1, TGFB1, BMP2, BMP4, AGT, and RELN) were genotyped. RESULTS: An association between TGFB1 (rs1800472) and otosclerosis was detected, confirming several previous reports. It is surprising that no association was found between RELN and otosclerosis because the current analysis had very reasonable power and the RELN association has been published before in different articles using several independent populations. CONCLUSION: Our findings strengthen the association of TGFB1 (rs1800472) with otosclerosis. The fact that other genes did not replicate could be due to different reasons like lack of power (BMP2 and BMP4) and possible false-positive initial association (COL1A1 and AGT). A plausible explanation for the lack of association for RELN is that RELN could be associated with a specific otosclerosis-like phenotype that is different from the histologically confirmed phenotype of the patients in this study, and that is clinically not distinguishable.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Proteínas de la Matriz Extracelular/genética , Proteínas del Tejido Nervioso/genética , Otosclerosis/genética , Otosclerosis/patología , Serina Endopeptidasas/genética , Factor de Crecimiento Transformador beta1/genética , Adulto , Angiotensinógeno/genética , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 4/genética , Estudios de Casos y Controles , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Femenino , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple , Proteína Reelina , Adulto Joven
11.
Am J Med Genet A ; 161A(1): 145-52, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23208854

RESUMEN

Implementing DNA diagnostics in clinical practice for extremely heterogeneous diseases such as hearing loss is challenging, especially when attempting to reach high sensitivity and specificity in a cost-effective fashion. Next generation sequencing has enabled the development of such a test, but the most commonly used genomic target enrichment methods such as hybridization-based capture suffer from restrictions. In this study, we have adopted a new flexible approach using microdroplet PCR-based technology for target enrichment, in combination with massive parallel sequencing to develop a DNA diagnostic test for autosomal recessive hereditary hearing loss. This approach enabled us to identify the genetic basis of hearing loss in 9 of 24 patients, a success rate of 37.5%. Our method also proved to have high sensitivity and specificity. Currently, routine molecular genetic diagnostic testing for deafness is in most cases only performed for the GJB2 gene and a positive result is typically only obtained in 10-20% of deaf children. Individuals with mutations in GJB2 had already been excluded in our selected set of 24 patients. Therefore, we anticipate that our deafness test may lead to a genetic diagnosis in roughly 50% of unscreened autosomal recessive deafness cases. We propose that this diagnostic testing approach represents a significant improvement in clinical practice as a standard diagnostic tool for children with hearing loss.


Asunto(s)
Sordera/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN/métodos , Conexina 26 , Conexinas/genética , Sordera/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Am J Hum Genet ; 91(4): 636-45, 2012 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-22981119

RESUMEN

CaBPs are a family of Ca(2+)-binding proteins related to calmodulin and are localized in the brain and sensory organs, including the retina and cochlea. Although their physiological roles are not yet fully elucidated, CaBPs modulate Ca(2+) signaling through effectors such as voltage-gated Ca(v) Ca(2+) channels. In this study, we identified a splice-site mutation (c.637+1G>T) in Ca(2+)-binding protein 2 (CABP2) in three consanguineous Iranian families affected by moderate-to-severe hearing loss. This mutation, most likely a founder mutation, probably leads to skipping of exon 6 and premature truncation of the protein (p.Phe164Serfs(∗)4). Compared with wild-type CaBP2, the truncated CaBP2 showed altered Ca(2+) binding in isothermal titration calorimetry and less potent regulation of Ca(v)1.3 Ca(2+) channels. We show that genetic defects in CABP2 cause moderate-to-severe sensorineural hearing impairment. The mutation might cause a hypofunctional CaBP2 defective in Ca(2+) sensing and effector regulation in the inner ear.


Asunto(s)
Proteínas de Unión al Calcio/genética , Trastornos de los Cromosomas/genética , Cóclea/fisiopatología , Células Ciliadas Auditivas/patología , Células Ciliadas Auditivas/fisiología , Pérdida Auditiva/genética , Mutación , Calcio/metabolismo , Trastornos de los Cromosomas/metabolismo , Trastornos de los Cromosomas/fisiopatología , Cóclea/metabolismo , Consanguinidad , Exones/genética , Femenino , Genes Recesivos , Predisposición Genética a la Enfermedad , Células HEK293 , Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva/metabolismo , Pérdida Auditiva/fisiopatología , Humanos , Masculino , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...